Inside the JBuilder
OpenTools API

Keith Wood

Cataloging—in—Publication Data

Wood, Keith, 1961—

Inside the JBuilder OpenTools API / by Keith Wood.

ISBN 1-59457-427-8 (pbk.)

1. JBuilder (Computer tool). 2. Java (Computer file). 3. Computer software—Development. I. Title

© 2004, Keith Wood
All rights reserved
kbwood@jiprimus.com.au

Published by BookSurge
5341 Dorchester Road Suite 16
North Charleston, SC, 29418

No part of this book may be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written
permission from the author.

ISBN 1-59457-427-8
10987654321

JBuilder is a registered trademark of Borland Software Corporation in the United States and other countries. Other products
mentioned are used for identification purposes only and may be trademarks of their respective companies.

Contents

COMLEIILS uuuereeiiinnreeiissnreenissnneecsssseeecsssssrecsssssreesssssssesssssssscsssssssssssssssesssssssssssssssssssssasassssnas i
DedIiCAtION cuuceiiiiuiieiiiisnrieciiitieciisnieesissnreecssssreecssssseecsssssreessssssessssssssssssssssessssssssssssssasssss v
Preface vi
What is i the DOOK?evviiiiiiiee ettt e et re e s eeraee s vi
COde DOWNIOAAS ...eeeeiiiiieeiiiiieeeiiie ettt ettt e st e e st e e et eeeesabaeeeeasseeesnnsseeeanns vi
CONVENEIONS .ereueviireeeiirieeesirteeesssteeesssseeesssseeeessssseesssssseesssssseeesssssseesssssseesssssseessnns vi
Part lll
The User Experience
Chapter 9 3
Utility Classes 3
AUTAIMAZE ClaSSuvvireeiiiieeeiiieeeeeiiteeeriiee e et teeeettaeeeesataeeeessnseeessnssaeesessaeessnssseens 5
BULtONSIIIP ClASS ..vvvieeiiiiieeeiiiieeeeiiee e eritte e eerte e e et eeesetrteesetnaeeesnsnaeesssssaeeeenssseens 6
CRECKTTEE CLaSS....eeeiiiiiieeiiiiiee ettt e eerteeeeetteeeeettaeeeeataeeessssseeesenssaeessssseeessnsseeanns 7
CheckTTEEINOAE ClaSS ...veveiiiiireieiiieeeeiieeeeriieeeeeiiteeeerreeeestreeessesaeeessssaeeessnsseeanns 8
[0 T TS O TSRS 10
(0] 1100 211 W O TSRS 11
ClipPathRenderer Class...........ieiieurieerriiieeeeiieeeeriieeeesireeeeesreeeessnreeessesaeesssnneess 12
(0701 (014 07071110 To O3 TSRS 12
(0701 (020 227 1TS] I O T3 USRS 14
ComMPOSILEICON CLASSvviieeiiiiieeiiiieeeriiie e eeiee e e etreeeestreeeeerbeeessstsaeeeseseeeesnsnneeas 15
DEDUG CIaSS ..tiiieiiiiieeeeiiiee ettt ee ettt e e ettt e e e et te e e e ttaeeeesntsaeesentraeeesnrreeeennaeeas 16
DefaultDialog CLassvvieereeviieeiiiie ettt et e e stree e e stree e s etraeeeeenaeeeensneeas 19
DialogValidator INterfacecoocvviviiriiiiiieiiiee et 21
LD i 0 T RSP 21
DIfTENLTY ClaSS .uvvvireeeiiieeeeiieeeeeiiee e eeiiteeeeirt e e e erreeeesnbeeessntsaeesesssaeesessseeesnssneeas 23
DummyPrintStream Class...........ocecuvireiriiiieeeriiiieeeiieeeesiieeeesirreesserreeessenreeesssneeeas 23
7o) T O - 1] USSR 24
IcONS. JCONFACLOTY ClasS.....cciuviieeiiiiieeeriiiee et e eeiteeeeetreeeestbeeeseeraeeesenreeeennnneeas 25
IMAZES ClASS .vvvreiiiiireeiiiieeeeiiee e et te e et te e e et te e e e ttbee e e ttbeeessntbeeesenssaeeesnssseeeennsseeas 25
JBUILAETINTO ClaSS .. eiiiiuviiieeeiiiieeeiiie ettt ettt e e et e e s etraeeeeenraeeennneeas 26
KeyStrokeDialog ClIass........ccvvvieieiiieeiiiiieeeeiieeeesireeeesiieeesstreeessssaeeesssnseesssssseeas 30
KeyStrokeEditorPanel Classc.vvveveiiireeriiiieeeiiie e eeiiee et e eeree e e srreeeeenaee s 31
KeyStrokeEditorTextField Class..........occviiiiriiiieeriiieeiiiie et e e e e snree e 33
LiStPANE] ClassS.......uvvieeiiiieeiiiiieeeeiiie e eeiite e eeiit e e e ettt e e et eeeestbaeesesesaeeessssaeeennnseeas 34
PackageBrowserDialog Classc..eeeevcuviieeriiiieeiiiieeeeiiieeesiieeeesreeeeerreeeenneees 38
PackageBrowserFilter INterfaceooccvvvieriiiieiiiiiieeeiiiee e 40
PackageBrowserTree Class.........ccccuiieeriiiieiniiieeeeiieeeesiieeeeeireeeeeereeeessenreeesnnneeas 41
o 11 o N A O T USRS 43
o T o) s O T USSR 49
ProjectPathSet Class.........cviieviiriieiiiee ettt ee e ee e e e e e e e enreeeennreees 49
ReguIarEXPression Classueevrurieeeriiiieeeiiiieeeeiieeeesireeesstrreesserneeesssnseeessssseeas 53
RegularExpression.MatchResult Class..........cccvvverriiieeiniiiieeiniieeeeiiee e 55
SEATCRTTEE ...eeevvviieeeeiiie e ettt e ettt e e ettt e e e e tteeeestreeeesstsaeeeesssaeeesnssseeessssseeenns 56
SHrEAMS CLASSvvviieeiiiieeeeiiieeeeiiteeeriiee e e st teeeetrteeesstbeeesssssaeesesssseeessssseeesssseeennns 58
SHINGS ClASS 1evvvrereeiiiieeeeiiieeeeiiee e ettt e e estbeeesettaeeesssreeeessssaeeassssseeessssseeenssseeennns 59
Strings. StringEncoding Class...........coccvvieiiriiireeniiie e esereeeesnreeeesereeeens 62

1 o) (S 1) 0 o O 2 1SR TO R PRPPPRRR 62

TEXE ClaSS .ttt ettt ettt ettt ettt ettt e ettt ettt e ettt e st e et e e bt e e steeenateeens 65
TEXEFIIE ClASS ..ttt ettt ettt ettt e e bt e sbeeenaeeeens 66
TeXturePanel CIassc.eiiiiiiiiiiiiie ettt e 66
VetOEXCEPLION CLASS....cceiiiiiieeiiiiieeiiiie e ettt e esstteeeeteeeeestreeeesabeeeesssnaeesesnnseeennns 67
Y 10) BT 1o QO b T USRS 67
ZIPINAEXENLTY ClaSS ...vvveiiiiiieiiiiiieeeiiie e eeiiee e esette e et e e esteeeeesasaeeessenaaesennnseeeenns 71
UISampler EXamPIe.......ccccuviieiiiiiieeiiiie e ettt e eeiieeestteeeeeeraeeesareeeesernaessnnneeeenns 72
SUIMIMATY ©1eeeeeiiiiiiieeeeeeeeeeitete e e eeeeseittaeeeeeessasaattaaeeeeaeesaansesaaeeeessssannsssnnaeaasessannes 76
PartV
The Editors and Viewers
Chapter 20 79
Component Modeling Tool 79
CmtComponents INtErfACE.uviiriiiieiiiiie e e e rrre e e 82
CmtComponent INTEITACEvviireiiieiieiiie ettt e e tree e e 83
CmtComponentSource INterface...........covvvviriiriiire i 85
CmtComponentListener INterface............cccvvvivrciireiriiireeiiiee et 88
CmtSubcomponent INterfacecccvvvireiiiriiriiiee e 88
CmtFeature INterface.........ooouiiiiiiiiiii e 92
CmtProperty INtErfaCE.vviieiiiieieiiie et eree e e tree e e 92
CmtPropertySource INtErfacecccvvveeveiiiriiriiiee ettt ere e 93
CmtPropertyState INterfaceccoveviiiiiriiieiiiiee e 93
CmtPropertySetting INterface.........oovvvivireiiiriiiiiee e 95
CmtModel INEEITACEcouviiiiiieiiie e 95
CmtModelNOode INTErface.covuiiiiiiiiiiieiiie e 97
CMT EXAMPIE ..eeeeiniiiiieiiiiee et e et e e ettee e ettt e e s e traeeeettaaeesstsaessenssaeesenssneessnnnns 97
SUIMIMATY 11eeeieeiiiiitte e ettt e e e ettt e e e e e s e ebtbtteeeeeeessanatteteeeeeesaaansesneeaeesssnnnns 104
Chapter 21 105
UI Designers 105
DesignerManager ClLasscccvvieerriieeeiriiieeseiieeeesiiteeeserreesssnreeessssseesssssseeennns 107
DesignerListener and DesignerReleaseListener Interfacesccocoeeevueeiiieenneenns 108
DesigNErEVENt ClaSSccciciiiiiiriiiieeeiieeeeiiee e eeiieeeesirteeeseraeeestrreessssssaeessssseeenns 109
Designer INLETTACE.vvieiiiieeeeiiiee ettt ete e e erae e e e ee e e ssreeesensraeeenns 111
InternetBeansDesigner EXample.........cvvviveiiiiiiiiiiriiiiiee e 113
InternetBeansModel and InternetBeansModelNode Examples............cccceeevrivneeennne 119
InternetBeansViewer EXamplecccvvviviiiiiiiiiiiiieiiiie et 124
SUIMIMATY +1eeeieeiiiiittee e e e eeeeie e e e e e ettt e e e eeeessattbateeeeeeesaannttateeeeesssaansssneeaaesssannns 129
Chapter 22 130
Layout Assistants 130
LayoutAssistant INterface.ccuvviiriiiiiiiiiiiee et eree e 131
DESIZNVIEW CLaSS.....uviiiiiiiiieeeiiiiee ettt e e eetiee e e iteeesetrteessesaeesesssaaeessssseeessssseeennns 136
SelectBoxes Interface and SelectNib Class.........cceevcvvveeeriiiieerniiiieeeriiieeeeieee e 137
BasicLayoutAssiStant CLASSeeevevieeeriiiirerriiieeeeiiteeesrreeessnreeesssreeesssneeesnns 140
BorderCornerLayoutAssistant EXample...........coccvvviiniiiieeiniiiieeniiee e 142
SUIMIMATY 11eeeieiiiiiitiee e e ettt e e e e e ettt e e e e e e e aatbtbaeeeeeeesaanatteteeeeeessaassssaeeaeesssnnnns 150

Part VI
The Wizard Framework

ChAapter 24ccoovvmeeiiieciiisscssnneeiiecsse 155
Java Object Toolkit 155
JotPackages INtErfacecoccviiiiiiiiiie i e 157
JOtFIle INTEIfaACE.oovviiiiiiiiiiie 159
JotSourceFile INterfaceoooovviiiiiiiiiii 159
JotMarker INterfaceooovviiiiiiiiiiii 161
JotFileListener INterfaceooovviiiiiiiiiiiiii 162
JOtFILEEVENt ClaSScoooviiiiiiiiiiiiiieeeee 162
JOtCIass INtEIfaACEoovviiiiiiiiiiii 163
JotClassSource INterface...........ooovviiiiiiiiiiiiii 167
JOtTYPE INEITACE. .. .eeiiiiiiie ettt et e e ee e e 169
JOtMethod INTEIfaCE.cooviiiiiiiiiii 169
JotMethodSource INterfaceooovviiiiiiiiiiii 170
JotCodeBlock INtErfaceoovvviiiiiiiiiiiiiii 171
JotSourceElement INterfaceccccvviiiiiiiiiii 174
JotCommentable INterface ... 174
JotComment INterface............ooooviiiiiiiiiiiiiiii 175
JOtEXPTession INtErface.cccuvviiiriiiie e ee e e 176
JotStatement INtErfaCeooovvviiiiiiiiiiiii 177
JSPTagWizard EXamMPLecc.veviiriiiiieiiiiieeciiie e eeiiee et eestee e eeree e e earee e e 179
Generating @ Java ClasS........vuvveieiiieeeeiiieeeriiieeeeiieeeeerreeeestreeesetneeeeseraeesensneeeas 183
SUIMNIMATY ...ttt e e e e ettt e e e e e e ettt e e e e e e et ateeeeeeesasnetateeeaeeesaaanssnnneaeeeesssannnssnnes 193
Part VIII
External Systems
Chapter 27 197
Version Control Systems 197
VICSFACLOTY CIaSS ...viieiiiiieeiiiiieeeeiiieeeeiie e e siteeeeetrteesetreaeesnsreesssnsseeessnnseeeenssnns 198
VS CIASS..cooiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 199
RevISIONINTO ClASScoovviiiiiiiiiiiiiieeeeeeeeeeeeeeee 202
AbstractReviSioNNUMDET CIASSuuvvuvireiriiiiiieiieeiieeseieeaeerreeeerreraaereereaaane—————— 203
VCSFILEIN O ClaSS......ccooviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 203
VCSFIEStatus Class.........coovviiiiiiiiiiiiiiiiiiee e 204
AV O] 8151 S O3 F: T TR 205
CommitACtION CIASSooooviiiiiiiiiiiie 211
SourceSafeVCS EXamPIecccocviiveieiiiiieeiiiie ettt eereee e eeeiee e sraee e e s 212
SUINIMATY ...ttt et e ettt e e e e e e ettt e e e e e e s e eabatbeeeeeeesaanttbeaeeaeesesasnnssnneaeeesssssnnnssnnes 223
Chapter 28 224
Application Servers 224
JBOSS EXAMPIE ...neiiiiieiiiiie ettt te e et e e et e e e ae e e nneee 225
ServerManager ClaSS........ccvuveerruiieeeriiieeeeriieeeeriteeeestrreeessrreeesssreeessssaeesssssseess 225
SEIVICE. TYPE CLaSSevviieeeiiiieeeiiee ettt e e re e et ee e s e tbaeessneraeeeesnneeas 230
RTS8 (ol O F: 1] 232
NTS Y O F: T 236
ServerLauncher ClasS......coooee e 248
ApPServerTargeting Class..........coevvvreerriiiireiriiieeeriieeeerreeeesnreeeestreeessereeeeeenns 255
AbstractDeploymentDescriptor Classcoccveeeeriiiieeerriiieeeniiieeesiieeeesireeeeeenns 259
DeploymentDescriptor CIASSccvvieeerriieeiriiireeriiieeeeireeessireeeesnreeessenreeeennns 260

AbstractDescriptorConversion Classccveeeeriiireeriiiieeenniieeeeriiieeesssrreeessnneens
SetUPMANAZET CLASSevvvieiiiiiieeeciiieeerieeeeriteeesrtreeesetrreeestrreeesssnseeessnsseeeennnnns
N T o O 2]SSPSR
JBOSSSEtUP24 EXAMPIEevviieiiiiie ittt eiiee e eeeee e et re e e eareeesssnraeesessraeeenns
SetupPage INLEITACEc.vvvieiiiiie et e e e e st eeeeenens
SetupPropertyPage Class...........viiieciiiieiriiiie et seiiee e eeiree e esree e e sareeesseraeeeenenes
NestingSetupPropertyPage Class.........ccvvveveiiireeriiieeeriiee et e e
SUIMIMATY 1eeeeiiiieteee e et e e e e ettt e e e e e e saatteateeeeeeeaanntaaeeeeeeesaaannsssnaeaessssnnnns

Appendices

Appendix B
JBuilder Documentation Version Differences

Appendix C

Help Topics
Appendix D

XML Tools OpenTool

XMLValidator Interface..............oooovviviiiiiiiiii
XSLTVIeWETFactOry Classccccvvieerriiieeeeiiieeeeiiieeesieeeeerireeeeetreeeeeeraeeesnnnneees
XSLTNOAEVIEWET ClIaSS......cccovveiiiiiiiiiiiiiee
Index

List of Examples
UISampler EXamPIe.......ccccvviiiiriiiiieeiiieeeeiiee e eeiieeeesitteeeeineeeeernaesssssreesssssnaeeenns
CMT EXAIMPIE ..eeeeeiiiiieeeiiiie e eeiiie ettt e ettt e e etree e e e raeeessettaeesentsaeesessssaesssssseesnnns
InternetBeansDesigner EXample........ccvviivriiiiiiiiiiriiiiee e
InternetBeansModel and InternetBeansModelNode Examples............cccceeevvneeennne
InternetBeansViewer EXampleccccvviiviiiiiiiniiiiriiiiie e eiee e
BorderCornerLayoutAssistant EXxample............ccccvvviriiireiniiiieeniie e
JSPTagWizard EXamPIe.........ccccvireiiiiiiiiiiiie e eeiiie e eeite e e enee e s ereeesenneee e
Generating @ Java Classooocvvireeriiiieeiiiieeerieeeeeieeeessereeesetreeeeesnaeeeesnnreeesns
SourceSafeVCS EXamPIe.........cvviiviiiiiiiiiiieeiiiie ettt e eereee e saree e s eeree e e
JBOSS EXAMPIC....oiiiiiiiiiiiiiiieeeiiie ettt ettt e et te e e eraae e e snbaeeeennraeeen
JBOSSSEtUP24 EXAMPIEevviieiiiiie ettt eeitte e eeire e e erra e e s esnreeesennnaeeeans
XMLValidator INTETface.cc.uteiiiiiiiiiiiieeiiie e
XSLTVIEWETFaCtOry Classccccvvveeieiiireieiiieeeeiiieeeesiteeeerireeeeetreeesesereeeessnnneeas
XSLTNOAEVIEWET ClaSS.....ceiiiieiiieiiiieiiie ettt ettt ee et esbee e

275
275
282
282
287
287
287
290
294
297

Dedication

For James and Bronte

who wondered what I was doing all those nights.

Preface

This book is designed as an introduction to the OpenTools API within JBuilder,
from version 7 through version 10, and as a reference for building your own
tools. JBuilder is Borland’s Java development environment and has been rated as
the best Java IDE in several surveys of developers.

Due to space restrictions in the printed version of this book, several chapters
were not able to be included. They are presented here instead.

What is in the book?

Part I1I examines several miscellaneous classes that contribute to the overall
user experience within JBuilder. These let you manage persistent properties for
controlling various aspects of the environment, provide help for your tools, and
maintain the look—and—feel and functionality of JBuilder within your own tools.

Part V inspects the editors and viewers that let you interact with the content
of the nodes in the project. Graphically manipulating a node is achieved through
designers. You are free to develop new designers for specific elements within the
node. Layout managers are central to Ul development in Java, but they are not
suited to use with graphical tools. The layout assistants provide the bridge
between the two, letting you drag—and—drop for your own layout.

Part VI discusses the framework available for creating wizards within
JBuilder. These tools guide you through a complex or repetitive process by
asking simple questions, and often generate code as a result. To assist in writing
that code, the Java Object Toolkit (JOT) classes give you access to the contents
of a source file in an object-oriented manner. Conversely, you can parse existing
code with JOT and extract information from it.

Part VIII talks about how JBuilder can interface with external systems —
specifically Version Control Systems (VCS) and third—party application servers.
Application servers provide a hosting environment for EJBs and other enterprise
components. Through their integration with JBuilder you can easily deploy your
classes to the server, start it running, and then debug your code within it.

Code Downloads

Code for all of the examples presented in this book is available for download on
the accompanying Web site.

http://home.iprimus.com.au/kbwood/JBOpenTools

Ready—to—run versions of the tools (JAR files) are also included, so that you can
make the most of them immediately.

You will also find links to several repositories of OpenTools at the Web site,
along with links to other information about JBuilder and the OpenTools API.

Conventions

The main text of the book is set in a proportional font (like this), while terms
introduced for the first time appear in italics, as do emphasized items. Code

Vi

samples, references to Java classes and methods, the names of directories and
files, and text entered at a command line are presented in a fixed font. The
names of menu items and other Ul controls appear in a sans—serif font.

In many places throughout the book, references are made to the directories
where JBuilder is installed. Since this may change for different versions of
JBuilder and according to individual preferences, the notation “{JBuilder}”
refers to the main JBuilder directory. Also, all path names use a forward slash
(/) as the separator regardless of the operating system preference, in keeping
with JBuilder’s own conventions. So, the following file name refers to one of the
sample tools that comes with JBuilder and is found beneath the main installation
directory.

{JBuilder}/samples/OpenToolsAPI/actions/Actions.jpx

The actual path name may be something like this on a Windows machine:

C:\JBuilderX\samples\OpenToolsAPI\actions\Actions.jpx

Furthermore, wherever project files are referred to in their .jpx format, is
should be understood that the equivalent . jpr format would work just as well.
Certain additional points are highlighted within the book, as shown below.
The purpose of the different categories is to make it easier to pick out this
important or relevant information and its impact on the OpenTools API.

NOTE
Items of general interest look like this.

TIP
Tips for using JBuilder and its OpenTools APl appear like this.

WARNING

Information necessary for the correct functioning of a portion of the API is
brought to your attention in this manner. It includes class attributes that have
been deprecated.

VERSION

Differences between versions of JBuilder are highlighted in this fashion. Items
without this notation can be assumed to be the same throughout all the JBuilder
versions covered by this book.

UNDOCUMENTED

Borland has not documented some sections of the OpenTools API because they
may change in future versions of JBuilder. Those areas for which documentation
does exist can be regarded as relatively static — you can expect them not to
change, or at least be backward compatible, unti a major update of the
OpenTools API. Although you have access to the additional functionality of the
undocumented features and can develop some very nifty tools using it, you may
find that your tool does not work when you upgrade to a later version of JBuilder.
These areas are highlighted throughout the book as shown here.

DOWNLOAD

Due to space constraints in the printed version, several chapters are included
only in electronic format on the accompanying Web site. They are indicated by
this format. It is also used to indicate other information that is available on the
Web site.

vii

viii

BIO

Short biographies of the authors of various OpenTools appear in this style. These
tools help to illustrate the classes and concepts within the book, show the
breadth of possible tools, and act as a base for your own efforts. If you like a tool
or have suggestions, please contact the author and tell them that. Most do it on

their own time and with no payment.

Like most applications, JBuilder has a certain look—and—feel associated with it.
Much of the user experience comes from the capabilities of Java and the Swing
components. The basic appearance and behavior of the controls is set by the
selection of the Swing look—and—feel — Metal, Windows, Mac, or CDE/Motif.
You set it by choosing the Tools | IDE Options or Preferences menu item,
moving to the Browser or Look & Feel tab, and selecting the appropriate value
from the drop—down list.

Other aspects come from additional functionality built into JBuilder’s UI,
such as the incremental searching in all tree controls. To assist you in integrating
your tool into the IDE, JBuilder provides several sets of classes that make it
easier to achieve that look—and—feel.

Chapter 9 contains a number of miscellaneous classes that supply useful
functionality or a consistent user—experience. Browse through these as there may
be something that already does what you are after.

Part III: The User Experience

This chapter presents a collection of miscellaneous classes that come with
JBuilder. They provide basic functionality that is used throughout JBuilder itself,
and are available for your use as well. Some of the classes define user interface
components that can help you retain the look—and—feel of JBuilder in your tools.
Table 9-1 summarizes the classes described. They come from the com.
borland.primetime.ui (p.ui below), com.borland.primetime.ui.
table (p.ui.table below), com.borland.primetime.util (p. util),
com.borland.jbuilder.ide (j.ide), com.borland.jbuilder.info
(§.info), and com.borland.jbuilder.paths (j.paths) packages, but are
not the only ones in them. As usual, the Version column indicates which JBuilder
version they first appeared in.

‘1 UNDOCUMENTED

\J Borland has not documented many of the classes described in this chapter. So,
make use of them, but be aware that they may not be available, or may change,
in the future.

Table 9-1. Summary of utility classes.

Class Package | Purpose Vers

Auralmage p.util Enhance an image by creating a 4
colored aura around it

ButtonStrip p.ui Manage a set of buttons on a panel 4

CheckTree p.ui A tree view that displays a checkbox 4
against each node

CheckTreeNode p.ui Each node in a CheckTree, providing 4
support for determining the checked
status

Classes p.util Retrieve classpath information and find 4
classes on a classpath

ClipPath p.util Shorten a file name by removing path 4
details

ClipPathRenderer p.ui Draw a shortened file name in a list cell 4

ColorCombo p.ui A combobox to select a color 4

4 Part III: The User Experience

Class
ColorPanel
Compositelcon
Debug
DefaultDialog

DialogValidator
Diff

DiffEntry
DummyPrintStream
Icons
Icons.lconFactory
Images

JBuilderinfo
KeyStrokeDialog
KeyStrokeEditorPanel
KeyStrokeEditorTextField
ListPanel
PackageBrowserDialog
PackageBrowserFilter
PackageBrowserTree

PathSet
Platform

ProjectPathSet

RegularExpression

RegularExpression.
MatchResult

SearchTree

Streams

Package
p.ui

p.ui
p.util

p.ui

p.ui
p.util

p.util
p.util
p.util
p.util
p.util
j-info
p.ui
p.ui
p.ui
p.ui
j.ide
j.ide
j.ide

j.paths
p.util

j.paths

p.util
p.util

p.ui

p.util

Purpose

A panel showing colors to choose from
Combine icons by overlaying them
Simple debugging output

Dialog boxes in keeping with JBuilder’s
appearance

Validation interface for dialog boxes

Compare two sets of strings to find any
differences

A difference between two sets of
strings

A print stream that goes nowhere

Manage icons, including loading them,
extracting them from a larger image,
and generating disabled versions

Retrieve icons by extracting them from
a larger image

Work with images, including loading
them, and generating disabled versions

Details about the version and edition of
JBuilder

A dialog for obtaining a keystroke
combination

A panel for obtaining a keystroke
combination

A text field for obtaining a keystroke
combination

A panel for managing lists of objects
that have an ordering

A dialog for selecting a package or
class

A filter for excluding packages or
classes

The tree display of packages or
classes

Keeps track of a collection of paths

Details about the platform running
JBuilder

Provides information about the paths
for a JBuilder project

Simple regular expressions

Details about a match based on a
regular expression

An enhanced tree that allows searching
by typing
Copy or read a stream

Vers

A~ b D

N

Chapter 9: Utility Classes 5

Class Package | Purpose Vers

Strings p.util Work with strings, including encoding 4
and decoding them, and formatting
them

Strings.StringEncoding p.util Escape or un—escape characters within 4
a string

TableSorter p.util Sort data from a table model for display 4

p.ui.table | within a table

Text p.util Work with text, including removing 6
whitespace and replacing tabs with
spaces

TextFile p.util An enhanced file that lets you easily 6
read or write straight text

TexturePanel p.ui A panel that repeats a background 4
image across its surface

VetoException p.util Stop an action from continuing 4

Ziplndex p.util Details about entries in a Zip file 4

ZiplndexEntry p.util An individual Zip file entry 4

Have a look through the other classes in these packages that you can also use.
However, most of them are undocumented and will require some experiment-
ation to make the most of them.

Auralmage Class

Highlighting an image or an icon can be achieved through Figure 9—1.
the com.borland.primetime.util.AuraImage class. An Auralmage.
It basically generates an outline (an aura) of a particular

color around a given image, as shown in Figure 9-1. This ol |
experimental effect was decided against in JBuilder itself. E_
UNDOCUMENTED

Borland has not yet documented the AuraImage class, so
take care when using it.

The available methods of this class are:

public Auralmage (Image image);

public Auralmage (Image image, int auraColor);

public Auralmage (int[] pixels, int width, int height, int
auraColor) ;
Create a new image with a colored outline.
image is the image to be outlined.

auraColor is the color (in RGB format, like Color.blue.getRGB()) to
use in drawing the outline. If not specified, it defaults to green.

pixels is an array of color values from which to create an image. Although
presented as a one—dimensional array, it actually contains a two—dimensional
image of the size given below, with rows following each other sequentially
along the single dimension. Therefore the length of this array is width *

6 Part III: The User Experience

height. To access pixel x, y you would use pixels[y * width + x].
See the java.awt.image.PixelGrabber class for more information.
width and height are the dimensions of the image encoded in the pixel array.

public static Image createAuralmage (Image image);

public static Image createAuralmage (Image image, int
auraColor) ;
An alternate way to create an image with an aura, these methods return an
outlined image for further processing,
image is the image to be outlined.
auraColor is the color (in RGB format) to use in drawing the outline. If not
specified, it defaults to green.

public void dumpPixelMaps () ;
For debugging purposes, this method prints out the two maps used to mask
out the original image and the calculated outline.

public int getAlphaThreshold();
Retrieve the current cutoff point for transparency when determining the
extent of the image to outline.

public Image getAuralmage () ;
Obtain the image used for the aura. This is just the outline generated by this
class.

public int getAuraRGB() ;
Return the color of the outline as a RGB value.

public Image getBlendedImage () ;
Get the combined image — the original plus the aura.

public Image getSourceImage () ;
Retrieve the original image provided to this object to be outlined.

public void setAlphaThreshold(int threshold);
Establish the cutoff point for transparency when determining the extent of the
image to outline.
threshold is the maximum setting for the alpha value for a pixel for it to be
considered transparent.

WARNING
The alpha threshold value does not seem to be used currently.

public void setAuraRGB (int rgb);
Set the color used for the aura outline.
rgb is the outline color encoded as a single integer value. Use the getRGB
method of the Color class to obtain this value.

See the UISampler class that accompanies this chapter for examples of the
AuralImage in action

ButtonStrip Class

Arranging buttons on a panel is the purpose of the com.borland.primetime.
ui.ButtonStrip class. It extends Jpanel and lets you easily add a variety of
buttons to it, as seen in Figure 9—1.

Chapter 9: Utility Classes 7

Figure 9-1. A ButtonStrip.

Buttonskrip

UNDOCUMENTED

(Coc [concat J[ree]

The ButtonStrip class is currently undocumented.

Its abilities are shown below:

public ButtonStrip();

public ButtonStrip(boolean separate);

public ButtonStrip(boolean separate, boolean reversed);
Generate a new button strip with one of these constructors.

separate is true (the default) to have the buttons on the strip inset by a
small gap, or false to have them abut the edge.

reversed is true if the buttons are displayed in the reverse order to which
they are added, or false if the creation order is used.

public JButton createButton (String text, boolean add);
public JButton createButton (String text, char mnemonic,
boolean add);
Produce an ad hoc button and optionally add it to the panel.

text is the prompt displayed on the button.

add is true to add the new button to the panel, or false to just create and
return it.

mnemonic is the special character to use for the button.

public
public
public
public
public

JButton
JButton
JButton
JButton
JButton

createCancelButton (boolean add) ;
createHelpButton (boolean add);
createNoButton (boolean add);
createOkButton (boolean add);
createYesButton (boolean add) ;

Create a button of the appropriate type and optionally add it to the panel. A
reference to the button is returned for you to attach listeners to it. I believe
that the text for the buttons is localized, but have not been able to verify this.
add is true to add the new button to the panel, or false to just create and
return it.

public void setOrientation (int orientation);
Establish the orientation for the panel.

orientation

is the orientation setting. Use one of HORIZONTAL or

VERTICAL from javax.swing.SwingConstants.

CheckTree Class

Displaying checkmarks next to items in a tree is easily achieved with the
com.borland.primetime.ui.CheckTree class. It derives directly from
JTree and adds support for displaying and updating the checkboxes shown in
the Ul, as Figure 9-2 shows. Just replace your normal trees with this version. It
has no new methods, but relies on custom renderers, editors, and tree nodes.

8 Part III: The User Experience

Figure 9-2. A CheckTree.

[Acrne (Fri Mowv 30 00:00:00 GMT+10:00 1979) -
= META-IMF (Fri Mow 30 00:00:00 GMT+10:00 1979)
MAMIFEST.MF (Sak Jan 31 22:40:52 GMT-+10:00 2004)
= [wood (Fri Moy 30 00:00:00 GMT+10:00 1979)
=1 [keith (Fri Mov 30 00:00:00 GMT+10:00 1979)
= [opentools (Fri Moy 30 00:00:00 GMT+10:00 1979)
= [gifeditar {Fri Moy 30 00:00:00 GMT+10:00 1979)
Lﬁ.ctiDnCDnstants.class (Sat Jan 31 22:40:52 GMT+10:(
[calor, gif {5ak Jan 31 22:40:52 GMT+10:00 2004) =

L]

e

UNDOCUMENTED
All of the classes surrounding the CheckTree class are currently undocumented.

Its one method is shown here:

public CheckTree ()
Just create a CheckTree where you would have used a normal JTree. The
difference is in the nodes that make up the tree (as described in the next
section) and the model used (which should be CheckTreeModel).

See the UISampler class at the end of this chapter for an example of the
CheckTree in action, showing the contents of a Zip file.

CheckTreeNode Class

To get the most benefit from your CheckTree object, you should make all of its
nodes instances of the com.borland.primetime.ui.CheckTreeNode class.
Derived from DefaultMutableTreeNode, it adds methods to set and
determine the checked state of a node, as well as to update the values used to
display that node.

UNDOCUMENTED
Be aware that the CheckTreeNode class is not yet documented.

The methods of this class are listed below:

public CheckTreeNode (Object object);

public CheckTreeNode (Object object, boolean
checkableAndChecked) ;

public CheckTreeNode (String text, boolean checkable,
boolean checked) ;
Create new nodes for your CheckTree with one of these constructors.
object is the user object associated with this node. It allows additional
information to be carried along with the node.
checkableAndChecked sets both the checkable and checked options to the
same value. It defaults to false.
text is the display text for this node.
checkable determines whether the item appears with a checkbox.

checked indicates the initial state of the item.

Chapter 9: Utility Classes 9

public Icon getExpandedIcon();
Retrieve the icon shown against this node when it is expanded. If not
specified, it defaults to the normal icon for the node.

public Icon getIcon();
Retrieve the normal icon shown against this node.

public String getText () ;
Find the text displayed for this node.

public boolean isAffectedByParentEnabled();
Discover whether or not this node is also enabled when its parent is enabled.
Returns true if it is affected, or false if it is not.

public boolean isCheckable();
Returns true if a checkbox appears against this node, and false if it cannot be
checked at all.

public boolean isChecked() ;
Determine the current state of this node.

public boolean isEnabled();
Find out whether this node is enabled, returning true if it is, or false if it is
not.

public boolean isEnablementAffectedByParent () ;
Returns true (the default) if this node is enabled or disabled based on the
checked status of its parent, or false if its enabled status is not altered.

VERSION
The isEnablementAffectedByParent method is only available in JBuilder
10.

public boolean isLocked() ;
Discover whether this node may have its state altered, returning true if it
cannot, or false (the default) if it can.

VERSION
The isLocked method is not available in JBuilder 7.

public void setAffectChildrenEnabled(boolean affected);
When this node is enabled or disabled, this setting determines whether that
change is sent on to its children.
affected is true to pass this node’s enabled status on to its children, or false
to only update this node.

public void setAffectedByParent (boolean affected);
Alter how this node responds when its parent is enabled or disabled.
affected is true to have this node follow its parent’s enabled status, or false
to make it independent.

public void setChecked (boolean checked);
Update the current state of this node. Depending on the values for other
properties, this change may also affect the children of this node.
checked sets the state of the displayed checkbox.

public void setEnabled(boolean enabled);
Enable or disable this node through this method. The setting may be passed
on to children of this node depending on the value established via set-

10 Part III: The User Experience

AffectChildrenEnabled (on this node) and setAffectedByParent
(on its children).
enabled is true to enable this node, or false to disable it.
public void setEnablementAffectedByParent (boolean
affected);
Indicate whether this node’s enabled property is affected by its parent’s.
affected is true (the default) if this node’s enabled status changes in line
with its parent’s, or false if it is separate.
VERSION
The setEnablementAffectedByParent method is only available in JBuilder
10.

public void setExpandedIcon (Icon icon);
Set the icon shown against this node when it is expanded.
icon is the new image.
public void setIcon(Icon icon);
Modify the normal icon shown for this node.
icon is the new image.
public void setLocked(boolean locked);
Use this method to change whether this node can have its state updated.
locked is true to prevent the node from changing, or false (the default) to
allow the user to alter its state.

VERSION
The setLocked method is not available in JBuilder 7.

public void setText (String text);
Alter the text displayed for this node.
text is the new display value.

public String toString();
Returns the same value as getText.

The UlSampler class at the end of this chapter uses CheckTreeNodes when
displaying the contents of a Zip file.

Classes Class

Utility methods that deal with classes and classpaths are the province of the
com.borland.primetime.util.Classes class. All of its methods are static
so that they can be called directly. They are:
public static Url findPathUrl (Url[] classpath, String
className) ;
Find the first entry in the classpath that contains a particular class. If the class
cannot be found anywhere on the classpath it returns null.

classpath is the list of classpath entries to search. If null or empty the
method always returns null.
className is the full name of the class to find.

Chapter 9: Utility Classes 11

public static String getRootEntryFromClasspath (Class
class);

public static String getRootEntryFromClasspath (String
className) ;
Retrieve the location from which a class was loaded by searching through the
classpath. It is either the name of a directory or of a JAR file. The returned
value is ready to be inserted directly into another classpath. If the class
cannot be found it returns null.
class is a reference to the class being searched for.
className is the full name of the class to find.

public static String getShortName (Class class);
Extract just the name of the class provided by removing the package name.
For example, if passed this class, the return value would be “Classes”. If an
array reference is passed in, the name of its elements is returned instead.
class is the class whose name is desired.

public static boolean pathContainsClass (Url[] classpath,
String className) ;
Discover whether or not a class exists on a given classpath. The method
returns true if the class can be found and false if it cannot.
classpath is the list of classpath entries to search. If null or empty the
method always returns false.
className is the full name of the class to find.

public static String toPath(Class class);
Convert the full class name into a path name by replacing periods (.) with
slashes (/).

class 1s the class whose name is converted.

ClipPath Class

The com.borland.primetime.util.ClipPath class provides two static
methods that let you trim down a long path and file name so that it can be
displayed in a limited area. It does this by removing one or more path entries,
starting in the center of the full name, and replacing them with an ellipsis (...).
For example, to fit the path name into a label you could use the following:

label.setText (
ClipPath.clipCenter (label.getFont (), fileName, label.getWidth()));

UNDOCUMENTED
The CclipPath class, although mentioned in one of the help pages on
OpenTools, is not otherwise documented by Borland.

The methods (all static) available in this class are:

public static String clipCenter (Font font, String path, int
width) ;
Trim the provided path and file name to fit.

font is the font to use when measuring the size of the text.
path is the file name to be displayed in a restricted area.
width is the number of pixels that the path has to fit into.

12 Part III: The User Experience

public static String clipMenultemPath (String path, int
width) ;
Shorten the given path and file name based on the font used for menu items.
path is the file name to be displayed in a restricted area.

width is the number of pixels that the path has to fit into.

The ulSampler class described at the end of this chapter illustrates how the
ClipPath class is used.

ClipPathRenderer Class

The com.borland.primetime.ui.ClipPathRenderer class makes use of
the ClipPath class to draw an item in a list via the ListCellRenderer
interface. Just create an instance of it through its no—argument constructor and
assign that to the list or combobox (see Figure 9-3).

clipCombo.setRenderer (new ClipPathRenderer());

Figure 9-3. A ClipPathRenderer in a combobox.

ClipPathRenderer | cifJBuilder!. .. fSampler.java -

UNDOCUMENTED
Borland does not document the ClipPathRenderer class, but then there is
basically nothing to know about it anyway.

ColorCombo Class

Selecting a color can be performed via the com.borland.primetime.ui.
ColorCombo class. It extends JComboBox to display a swatch of the current
color and pops up a ColorPanel to select a new one, as shown in Figure 9—4.

Figure 9-4. A ColorCombo.

ZolorCombo IEl

[T
ETENEEEE EN |

UNDOCUMENTED
The ColorCombo class is undocumented so far.

Its abilities are described below:

public ColorCombo () ;
public ColorCombo (Color[] colors);
public ColorCombo (Color[] colors, int height);
public ColorCombo (Color[] colors, int height, int
alignment) ;
Build a new color combo component with the given initial values.

colors is the list of custom colors to show. It must contain eight entries.

Chapter 9: Utility Classes 13

height is the height of the popup color panel in cells. It should be a power
of two. It defaults to DEFAULT POPUP_ GRID HEIGHT (2).
alignment is the alignment of the popup color panel. It defaults to RIGHT.

public static Color decodeColor (String colorText);
Convert a single color from a text representation to a Color object.
colorText is the text form of the color.

public static Color[] decodeColors(String colorList);
Convert a list of colors, specified in a string and separated by colons (:),
into an array of Color objects.
colorList is the list of colors to convert. A suitable list may be obtained
via the encodeColors method.

public static String encodeColor (Color color);
Transform a color into a text version of itself. The returned value is a set of
three integers, separated by commas (,), being the red, green, and blue
levels (0 to 255) of the color.
color is the color to translate.

public static String encodeColors (Color[] colors);
Transform a list of colors into a corresponding string representation. A colon
(@) separates each color from its neighbors.
colors is the list of colors to convert.

public Color[] getCustomColors();
Return the list of colors shown in the right-hand portion of the popup color
panel.

public int getPopupAlignment () ;
Retrieve the alignment for the popup color panel.

public int getPopupGridHeight () ;
Obtain the height of the popup color panel in cells.

public Color getSelectedColor();
Find the color selected by the user, or black if none has yet been selected or
set.

public void setCustomColors (Color[] colors);
Load the list of custom colors to show in the right—hand portion of the popup
color panel.
colors is the list of colors to show. It must be an array of eight Color
objects.

public void setPopupAlignment (int alignment);
Set the alignment for the popup color panel.
alignment is the new setting. Use either of the constants LEFT or RIGHT
from this class.

public void setPopupGridHeight (int height);
Establish the height of the popup color panel in cells.
height is the new setting. It should be a multiple of two. The default value
is held in the DEFAULT POPUP GRID HEIGHT constant.

public void setSelectedColor (Color color);
Change the chosen color to the given value.

color is the new color to use for this control.

14 Part III: The User Experience

An example of the ColorCombo class appears in the UTSampler class discussed
at the end of the chapter.

ColorPanel Class

Displaying a set of colors to choose from is the purpose of the com.
borland.primetime.ui.ColorPanel class, as can be seen in Figure 9-5. It
can be used standalone, or as part of the ColorCombo component.

Figure 9-5. A ColorPanel.

ColorPanel

[T S ..
AN mEa

UNDOCUMENTED
Be aware that the ColorPanel class is undocumented so far.

Its abilities are listed below:

public ColorPanel () ;

public ColorPanel (Color[] colors, int wvalue);
Create a new panel containing color swatches for selection with these
constructors.
colors is the list of custom colors to show. It must contain eight entries.
value appears to be ignored.

public void addActionListener (ActionListener listener);
Add a new object to be notified of changes to the selected color.
listener is the object to inform.

public String getActionCommand () ;
Return the command string that gets passed along to registered listeners
when a new color is selected.

public Color[] getCustomColors();
Retrieve the set of custom colors displayed in the right-hand portion of the
panel.

public Color getSelectedColor();
Get the color selected by the user.

public void removeActionListener (ActionListener listener);
Delete an object from the list of those notified of changes to the selected
color.
listener is the object to remove.

public void setActionCommand (String command) ;
Set the command string that gets passed along to registered listeners when a
new color is selected.
command is the text to send on.

public void setCustomColor (int index, Color color);
Update a custom color to a new value.
index is the position within the custom color array to alter. It must be offset
by the number of fixed colors in the panel. Thus the index for the first

Chapter 9: Utility Classes 15

custom color is given by colorPanel.fixedColors.length (currently
16), while the last is found by adding colorPanel .GetCustomColors () .
length to that and subtracting one (resulting in 23 at present).

color is the new color to show.

WARNING

Setting an individual custom color does not automatically update the display.
What you need to do is to set the entire collection of colors at once. You can
achieve the same effect with the following code:

colorPanel.setCustomColor (16, Color.pink);
colorPanel.setCustomColors (colorPanel.getCustomColors());
public void setCustomColors (Color[] colors);
Set the custom colors to display in the right—hand portion of the panel.
colors is the list of colors to show. It must contain eight entries.
public void setPanelGridHeight (int height);
Establish the height of the popup color panel in cells.
height is the new setting. It should be a power of two. The default value is
two.
public void setSelectedColor (Color color);
Initialize the color currently selected.

color is the chosen color. The default color is black.

Several static fields are also defined in this class:

public static final Color[] fixedColors;
This array contains the colors shown on the left in the panel — the ones that
do not change.

public static final Color BLUE GREEN;

public static final Color DARK BLUE;

public static final Color DARK GREEN;

public static final Color DARK MAGENTA;

public static final Color DARK RED;

public static final Color DARK YELLOW;

These constants are the additional colors (beyond those available in the
Color class) that appear in the main part of the panel.

See the UIsampler class at the end of the chapter for an example of the
ColorPanel class.

Compositelcon Class

Combine multiple icons to produce a single version with the com.borland.
primetime.ui.CompositeIcon class, as shown in Figure 9-6.

Figure 9-6. A Compositelcon.

Campositelcon

It implements the Icon interface, adding these methods:

16 Part III: The User Experience

public CompositeIcon(Icon[] icons);
Create a new icon made up of several components with this constructor. The
icons are painted in the order that they appear in this list. Each icon is
centered in the space allocated for the composite.
icons is the list of icons to combine.

public CompositeIcon(Icon[] icons, int separation, int
orientation);
Create a new icon made up of several components with this constructor. In
this case, the icons create a grid based on the orientation supplied.
icons is the list of icons to combine.
separation is the pixel distance between neighboring icons in the grid.
orientation is the direction in which to create the grid. It is one of the
HORIZONTAL or VERTICAL constants from this class.

public Icon findHit (Point point);
Determine which icon from the collection corresponds to a particular
location — perhaps as the result of the user clicking on the icon. A null is
returned if no hit is found.
point is the position within the combined icon to locate.

See the UIsampler class at the end of the chapter for an example of the
CompositeIcon class.

Debug Class

To assist you with your debugging efforts by logging details from your tools, the
com.borland.primetime.util.Debug is provided. By default it writes
messages to the standard error stream, but this can be redirected to any print
stream.
All the methods of the class are static, and are shown below:
public static void addTraceCategory (Object category);
Filter trace and warn method calls by specifying categories that are to be
logged.

category is a unique object that is registered via this method. Thereafter
trace or warn calls are only displayed if the category specified there is one
that has been previously registered here. All categories should generate a
meaningful value via their toString method since this is displayed with
each logging event.

public static void debugRect (Graphics g, int x, int y, int
width, int height);
Each time that this method is called it draws a different colored and patterned
rectangle on the graphics surface, providing visual feedback that it has been
called.
graphics is the surface to paint onto.
x and y are the top—left coordinates of the rectangle to draw.
width and height determine the extent of the rectangle to draw.

public static void enableAssert (boolean enable);
Enable or disable the use of assertions within this class.

Chapter 9: Utility Classes 17

enable is true to cause the ensure methods to throw exceptions when their
test conditions are not true, or false to have the ensure methods never throw
an exception.

public static void enableOutput (boolean enable);
Enable or disable the logging as a whole through this method.
enable is true to send subsequent output to the standard error stream, or
false to suppress the output (through the use of a DummyPrintStream
object).

public static void ensure (boolean condition) throws
AssertionException;

public static void ensure (boolean condition, String
description) throws AssertionException;
Throw an exception if the condition is not true and assertions are enabled
(see the enableAssert method).
condition is the expression to test with the expectation that it is true.
description is the text to pass to the AssertionException should it be
thrown.

public static void flush({();
Flush out the output stream.

public static void print (String message) ;

public static void println(String message) ;

public static void printlnc(String message) ;
Send the message to the output stream, with or without a final newline
character. The last version precedes the text with a counter that is
incremented on each call.
message is the text to display.

public static void printProfiler (Object key);
Display all the details acquired by a profiler, including minimum, maximum,
and average timings.
key is some identifying object.

VERSION

The printProfiler method is not available in JBuilder 7.

public static void printStackTrace();

public static void printStackTrace (Throwable exception);
Display a stack trace on the output stream.
exception is the exception to print the stack trace for. If no exception is
specified, a default one is generated and dumped.

public static void removeTraceCategory (Object category);
Delete a category from the list of those checked for trace and warn calls.
category is the object that was previously registered for logging via the
addTraceCategory call.

public static void setLogStream(PrintStream log);
Redirect the logging output to another stream with this method.
log is the new print stream instance to send subsequent output to.

public static void startProfiler (Object key);
Begin, or restart, a profiler.
key is some identifying object.

18

Part III: The User Experience

VERSION
The startProfiler method is not available in JBuilder 7.

public static void stopProfiler (Object key);

public static void stopProfiler (Object key, int
warningThreshold) ;
Stop a previously started profiler.
key is some identifying object.
warningThreshold is the number of milliseconds for the current timing
beyond which a warning message is displayed.

VERSION
The stopProfiler methods are not available in JBuilder 7.

public static void trace(Object category, String
description);

public static void trace (Object category, Throwable
exception);
Send an informational message to the output stream, but only if the supplied
category is one that was previously registered via the addTraceCategory

method and if output is enabled (see enableOutput).

category is the object identifying the category to log against.
description is the message to print out if everything is enabled.
exception is the exception to print a stack trace for if everything is
enabled.

public static void warn(Object category, String
description);

public static void warn (Object category, boolean condition,
String description);
Send a warning message to the output stream, but only if the supplied
category is one that was previously registered via the addTraceCategory
method and if output is enabled (see enableOutput).
category is the object identifying the category to log against.
description is the message to print out if everything is enabled.
condition is an additional test to evaluate before printing the message.
Only if this is true, as well as everything else being enabled, is the message
displayed.

Two fields round out the functionality provided by the Debug class:

public static int count;

This is the counter variable that is incremented and printed by the printlnc
method.

public static PrintStream out;
This is the current output stream that the log is being written to. Initially this
IS System.err.

A debugging section in your code may look like the following:

"trace";
"warning";

String tracing
String warning
Date date = null;

Chapter 9: Utility Classes 19

public void setStartDate (Date date) {
Debug.trace (tracing, "date=" + date);
Debug.warn (warning, date.before (new Date()),
"Start date must not be in the past");
this.date = date;
}

Debug.addTraceCategory (tracing) ;
Debug.addTraceCategory (warning) ;

Date now = new Date();
setStartDate (new Date (
setStartDate (new Date (

now.getTime () - 10000));
now.getTime () + 10000));

which would produce this output:

[trace] date=Thu May 16 18:17:24 GMT+10:00 2002
warn[warning] Start date must not be in the past
[trace] date=Thu May 16 18:17:44 GMT+10:00 2002

You can then control the level of debugging output by calling addTraceCat-
egory only for those levels that you want.

DefauItDiang Class

To retain the appearance of JBuilder’s dialog boxes, you can use the com.
borland.primetime.ui.DefaultDialog class (see Figure 9-7) that extends
the standard JDialog. It provides static methods so that you can easily create
and display a dialog, as well as instance methods that let you customize the
dialog before showing it. Features include auto—centering, finding an owning
frame, and modifying buttons.

Figure 9-7. A DefaultDialog.

< Modal Dialog

Yaur U here

[(nls][Cancel][Help]

Its methods are:

public DefaultDialog(Component owner, String title, boolean
modal) ;

public DefaultDialog(Component owner, String title, boolean
modal, boolean autoSize);
Create a new dialog to allow for customization before its display. You must
add your own content to the dialog and set the buttons that it displays.
owner is a component on the frame that owns this dialog.
title is the caption for the new dialog.
modal is true for a modal dialog, or false for a non—-modal version.

autoSize is true (the default) to have the dialog resize itself based on its
contents, or false if the size is set manually.

public void centerOnScreen () ;
Move the dialog so that it is centered on the screen.

20

Part III: The User Experience

public void doDefaultClick();
Trigger the doC1ick method of the default button in the dialog.

public static Frame findFrame (Component component);
Search the containership hierarchy to find the frame that holds a particular
component. This method is usually used to locate an owning frame for the
dialog.
component is the control from which to start searching.

public String getBoundsAsString () ;
Retrieve the bounds for this dialog as a comma—separated string in the format
“left,top,width,height”.

public boolean isAutoCenter();
Determine whether the dialog is automatically centered when displayed. It
returns true if it is centered or false if it is not.

public void setAutoCenter (boolean autoCenter);
Alter where the dialog appears.

autoCenter is true (the default) to automatically center the dialog, or false
to use the standard dialog placement.

public void setBoundsAsString (String location);
Given the bounds as a string in the format “left,top,width,height”, apply them
to the dialog.

location is the bounds in the above format.

public void setCancelButton (JButton cancelButton);
Set the button to activate if the dialog is cancelled.

cancelButton is the cancel button in your Ul

public void setDefaultButton (JButton defaultButton);
Establish which button in your Ul is the default one.

defaultButton is the button to use as the default.

public void setHelpButton (JButton helpButton) ;
Link a button to the help action in the dialog (pressing F1).
helpButton is the button that brings up help for the dialog.
public void show() ;
If you created the dialog yourself (rather than using one of the static methods
below), use this method to display it to the user.

public static boolean showModalDialog (Component owner,
String title, JComponent component, HelpTopic
helpTopic);

public static boolean showModalDialog (Component owner,
String title, JComponent component, HelpTopic helpTopic,
DialogValidator validator);

public static void showSimpleModalDialog (Component owner,
String title, JComponent component, HelpTopic
helpTopic);

public static void showSimpleNonModalDialog (Component
owner, String title, JComponent component, HelpTopic
helpTopic);
Display a standard dialog box with OK and Cancel buttons, and an optional
Help button. The simple versions do not have a Cancel button. You supply
the remaining contents of the dialog. The dialog is automatically sized by
calling pack.

Chapter 9: Utility Classes 21

owner is a component on the frame that owns this dialog.

title is the caption for the dialog.

component is the component that holds the contents of the dialog, excluding
the standard buttons.

helpTopic is the help topic to display when help is requested by the user, or
null for no help. The Help button only appears if this is not null.
validator is an object that implements the DialogValidator interface
(see below) and verifies the contents of the dialog before closing. If not
specified, the contents are assumed to be valid, unless the component
supplied for the Ul implements this interface, in which case it is used instead.
No validation is performed for the simple version of this method.

See the UIsampler class at the end of the chapter for examples of the
DefaultDialog class’ static methods.

DiangVaIidator Interface

Ensuring that the contents of a dialog are valid before allowing it to be closed is
the task of the com.borland.primetime.ui.DialogValidator interface.
Its one method simply verifies its associated dialog:
public boolean validateDialog();
Check the contents of the associated dialog box (usually a DefaultDialog
object) and return true if everything is fine, or false to prevent the dialog
from closing. You should display your own messages to the user indicating
what is wrong with the dialog’s contents.

A basic implementation of this interface appears in the UISampler class at the
end of the chapter.

Diff Class

Comparing two text files is made easier by using the com.borland.
primetime.util.Diff class. It takes in two sets of text, either as files, as
readers, or as arrays of strings, and generates the differences as an array of
DiffEntrys. The resulting array is cached within the class and is accessed via
an iterator. Differences can also be presented as an edit script in the format of the
“—-rcs” output from the Unix diff.exe utility.
public Diff ();
Create a new differencing object.
public void addAddition (int startlLine, String[] lines);
Manually update the differences by including an addition, meaning that lines
are inserted into the original text.
startLine is the number of the line after which the new lines are added.
Use zero to insert at the beginning of the text.
lines is the array of new lines to insert.
public void addChange (int startLine, String[] lines);
Alter the list of differences by specifying a set of lines from the original that
change.

22

Part III: The User Experience

startLine is the number of the first line (one-based) that is changed.
lines is the array of changed lines to replace the existing lines. A matching
number of lines in the original are affected.
public void addDeletion (int startLine, int count);
Update the differences manually by including a deletion, meaning that lines
are removed from the original text.
startLine is the number of the first line (one-based) that is deleted.
count is the number of lines to remove.
public boolean diff(File filel, File file2);
public boolean diff(String[] linesl, String[] lines2);
public boolean diff (BufferedReader readerl, BufferedReader
reader?) ;
public boolean diff (BufferedReader readerl, BufferedReader
reader?2, boolean preformat, String contentType);
Compare the two texts and cache any differences internally. Any existing
differences are cleared out before dealing with this call. The methods return
true if the difference processing succeeded, or false if it did not.
filel and file?2 are the two files to compare.
linesl and lines?2 are the two arrays of strings to compare.
readerl and reader? are the two readers to compare.

preformat is true to apply a formatting standard before comparison, or
false (the default) to leave the readers’ contents as they are.

contentType is the type of content within the readers. It helps to
determine which formatting standard is applied, and defaults to
“text/plain”.

VERSION
The diff method that takes the preformat and contentType parameters is
not available in JBuilder 7.

public boolean editScriptToDiff (Iterator diffFile);
If you already have a set of differences in the “—-rcs” output format of
diff.exe, you can transform it into a cached set of DiffEntry objects
through this method. It returns true if it is successful in the conversion, or
false if it fails.
diffFile is the existing differences in the appropriate format, accessed via
an iterator over an array of strings.

public Iterator iterator();
Obtain an iterator that steps through the cached differences in normal order.
Each item returned by the iterator is a Di ffEntry instance.

public void reset();
Clear out any differences in this object in preparation for another
comparison. Normally you would not call this directly since all the diff
methods automatically use it before their processing. If you are manually
updating the list of differences then you may want to use it.

public Iterator reverselterator();
Retrieve an iterator that steps through the cached differences in reverse order.
Each item returned by the iterator is a Di ffEntry instance.

Chapter 9: Utility Classes 23

public int size();
Return the number of differences currently cached in this object.

public String[] toEditScript();
Use this method to convert the cached set of differences into a “diff.exe -
—-rcs” style edit script stored as an array of strings. The result only contains
add and delete instructions.

There is an example tool that comes with JBuilder that demonstrates the Diff
class:
{JBuilder}/samples/OpenToolsAPI/DiffViewer/DiffViewer.jpx
A node viewer that lets you compare the current Java source file with another
file on disk to see what differences there are between them. It appears as the
Diff View tab in the Content Pane, but only for Java source nodes. It also
demonstrates the use of an editor and the highlighting of lines within it, and
uses the Di£f class to locate the differences between the two files.

DiffEntry Class

The differences found by the Diff class are cached internally as an array of
com.borland.primetime.util.DiffEntry objects.

UNDOCUMENTED
Be aware that the DiffEntry class is undocumented.

This class has several fields that you can access directly:

public int count;
The number of lines affected by this difference.

public String[] newlLines;
The set of lines that are added or changed, depending on the type of this
difference. For deletions, this field is nul1l.

public int startLine;
The number of the first line affected by this difference.

public int type;
The type of difference — being one of the class’ constants: ADD, CHANGE, or
DELETE.

DummyPrintStream Class

A print stream that does nothing, com.borland.primetime.util.Dummy-
PrintStream can be useful when a print stream is required but you are not
interested in the output. Use it wherever a normal print stream would be used,
since it has all the standard methods.

UNDOCUMENTED
The DummyPrintStream class is undocumented, but it does not do anything
anyway.

24 Part III: The User Experience

Icons Class

Managing sets of icons is the task of the com.borland.primetime.util.
Icons class. It typically works with a composite image that contains a large
number of same—sized icons arranged in either a single row, or in a grid. Rather
than loading each icon individually, the main image is retrieved and then each
icon that it contains can be extracted from memory.

UNDOCUMENTED
So far the Icons class is undocumented.

The abilities of the Tcons class are listed below, all being static methods:

public static Icon getBlankIcon (int width, int height);
Return an empty icon of the given size.
width and height are the sizes of the blank icon to generate.

public static synchronized Icon getDisabledIcon(Icon icon);
Create a disabled version of the given icon — converting it to a grayscale
image.
icon is the original icon to be disabled.

public static Icon getIcon (URL url);
Retrieve the image from a specified location and then create an icon from it.
url is the location to load the image from.

public static Icon getIcon(Class class, String imagePath);
Create an icon from the image specified as a resource.
class is the class whose loader is used to locate the resource.
imagePath is the full path and file name for the resource file that contains
the image.

public static Icon getIcon(Image image);

public static Icon getIcon(Image image, int left, int top,
int width, int height);
Construct an icon from an existing image, or portion thereof.

image is the picture to work from.

left and top are the starting coordinates for the portion of the image to
extract. They default to zero if not specified.

width and height are the size of the image portion to extract. They default
to the entire image if not specified.

public static IconFactory getIconFactory(Image image, int
size);

public static IconFactory getIconFactory(Image image, int
width, int height);

public static IconFactory getIconFactory(Image image, int
width, int height, int spacing);
Create an icon factory based around a composite image. Once obtained, use
the factory to extract the individual icons.

image is the composite image containing multiple icons.

size is the width and height of the embedded icons (assumed to be square).
width and height are the dimensions of the embedded icons.

spacing is the vertical and horizontal gap between successive icons.

Chapter 9: Utility Classes 25

Icons.IlconFactory Class

The com.borland.primetime.util.Icons.IconFactory class handles
the actual extraction from a composite image, which contains a regular array of
sub—images.

UNDOCUMENTED
As for the Icons class, this one is also undocumented.

Its methods are as follows:
public IconFactory(Image image, int size);
public IconFactory(Image image, int width, int height);
public IconFactory(Image image, int width, int height, int
spacing);
Create a new icon factory based on the supplied image.
image is the composite image containing multiple icons.
size is the width and height of the embedded icons (assumed to be square).
width and height are the dimensions of the embedded icons.
spacing is the vertical and horizontal gap between successive icons.
public Icon getIcon(int column);
public Icon getIcon(int row, int column);
Retrieve a particular sub—image from the factory.
column is the position of the icon horizontally within the larger image,
starting from zero.
row is the position of the icon vertically within the larger image, starting
from zero. If not specified, the row is set to zero.

Images Class

Load images with the com.borland.primetime.util.Images class to ease
the effort required.

UNDOCUMENTED
The Images class is undocumented.

Its static methods are described here:

public static Image getAuralmage (Image image) ;
Create a default (green) AuraImage from the given picture and return it.
This method adds a halo around the original image.
image is the picture to outline.

public static synchronized Image getDisabledImage (Image
image) ;
Build a disabled version (grayed out) of the given picture and return it.
image is the picture to be disabled.

public static Image getImage (URL url);

public static synchronized Image getImage (URL url, boolean
wait);
Retrieve the image from a specified location.

url is the location to load the image from.

26 Part III: The User Experience

wait is true (the default) to not return until the image is available, or false to
return immediately.

public static Image getImage (Class class, String
imagePath) ;

public static Image getImage (Class class, String imagePath,
boolean wait);

Load an image that is specified as a resource.
class is the class whose loader is used to locate the resource.

imagePath is the full path and file name for the resource file that contains
the image.
wait is true (the default) to not return until the image is available, or false to
return immediately.

public static synchronized void waitForImage (Image image) ;
Wait for an image to be loaded.

image is the image being read in.

JBuilderinfo Class

Details about the version of JBuilder running are available through the
com.borland.jbuilder.info.JBuilderInfo class.
UNDOCUMENTED

The JBuilderInfo class remains undocumented, and has indeed changed
over time.

Use its static methods (not all are included) to obtain this information, as listed
below:

public static final void actionVerify (UpdateAction action,
int edition);
Enable or disable an updateable action based on the edition of JBuilder in
use.
action is the action to enable or disable.

edition is one of the constants from the com.borland.primetime.
actions.UpdateAction class indicating which level of JBuilder is
required for this action’s functionality: PERSONAL, PROFESSIONAL, Or
ENTERPRISE.

VERSION
The actionverify method does not appear in JBuilder 10.

public static String getBuildNumber () ;
Obtain the current build number, such as “10.0.176.0”. Compare with the
getRawBuildNumber method

VERSION
The getBuildNumber method is only available in JBuilder 10.

public static String getCompanyName () ;
Return the company name specified by the user during registration.

Chapter 9: Utility Classes 27

public static int getDaysLeft();
If this is a time—limited trial version of JBuilder, find the number of days left
before it expires through this method. It returns zero if no time limit applies.

VERSION
The getDaysLeft method has been dropped in JBuilder 10.

public static String getDescription();
Obtain the full description of this JBuilder version, such as: “JBuilder X
Enterprise”.

public static String[] getExpansionPackNames ()
Get the list of expansion packs installed in JBuilder. The method returns an
empty array if none are present.

public static String[] getExtraDescriptions();
Retrieve any extra descriptions for this edition of JBuilder. An empty array is
returned if no other messages apply. For example, the Personal edition may
return: “Not for commercial use”.

public static String getRawBuildNumber () ;
Obtain the raw build number for this version of JBuilder, like “010.000.
176.000”. Compare with the getBuildNumber method.

VERSION
The getRawBuildNumber method is only available in JBuilder 10.

public static int getSKU();
Retrieve the SKU number for this version of JBuilder. Use the get SKUName
method to translate this into text.

VERSION
The getsSKU method is only available in JBuilder 10.

public static String getSKUDescription();
public static final String getSKUDescription (int SKU);
public static String getSKUName (int SKU) ;
Get the description of this edition of JBuilder: Trial, Professional, Enterprise,
etc.

SKU is the identifying number for that edition.
VERSION
The getSKUDescription method that takes an integer parameter is only

available in JBuilder 9. The getSKUName method is only available in JBuilder
10.

TIP
You can easily downgrade JBuilder's SKU for testing purposes by including a
system property in its start up process. In your jbuilder.config file, add the
line:

vmparam —-Dcom.borland.jbuilder.sku=Personal
and then restart JBuilder to restrict it to the Personal/Foundation edition. Use a
value of “Developer” for the Professional/SE/Developer edition.

public static String getUserName () ;
Return the name of the user as given during registration.

28

Part III: The User Experience

public static boolean isBeaEnabled();
Find out if this is the BEA version of JBuilder. It returns true if it is, or false
if it is not.

VERSION

The isBeaEnabled method is not available in JBuilder 7.

public static boolean isComponentEnabled (String className) ;
Determine whether or not the given class is enabled under this version of
JBuilder. It returns true if the component can be used, or false if it cannot.
className is the full name of the class being checked.

public static boolean isEntEnabled();

public static boolean isEnterpriseEnabled();
Find out if this is an Enterprise edition of JBuilder. It returns true if it is, or
false if it is not.

VERSION
The isEntEnabled and isEnterpriseEnabled methods are not available in
JBuilder 10. Use isGenericPremiumEnabled instead in JBuilder 10.

public static boolean isFoundationOnlyEnabled() ;
Returns true if using the Foundation edition of JBuilder, or false if using one
of the other editions.

VERSION
The isFoundationOnlyEnabled method is only available in JBuilder 10.

public static boolean isGenericPremiumEnabled() ;
Find out whether the premium (enterprise) edition of JBuilder is being used,
returning true if it is, or false if it is not.

VERSION
The isGenericPremiumEnabled method is only available in JBuilder 10.

public static boolean isGenericValueEnabled();
Discover whether the value (professional) edition of JBuilder is being used,
returning true if it is, or false if it is not.

VERSION
The isGenericvalueEnabled method is only available in JBuilder 10.

public static boolean isLibraryEnabled(Url url);
Discover whether a particular library of classes is available under this edition
of JBuilder, returning true if it is, or false if it is not.
url is the location of the library to check.

public static boolean isLicensed();
Get a flag indicating whether or not this copy of JBuilder is licensed. The
method returns true if it is licensed, or false if it is not.

public static boolean isProEnabled();

public static boolean isSeEnabled();
Discover if this is a Professional/SE edition of JBuilder. It returns true if it is,
or false if it is not. This method also returns true if it is an Enterprise edition.

Chapter 9: Utility Classes 29

VERSION

The isProEnabled method is not available in JBuilder 7 and 8, while isSe-
Enabled is only available in JBuilder 7 through 9. Use isGenericvValue-
Enabled in JBuilder 10.

public static boolean isStudio();
Returns true if the Studio edition of JBuilder is being used, or false if it is
not.

VERSION
The isStudio method is only available in JBuilder 10.

public static boolean isSybaseEnabled();
Find out if this is the Sybase version of JBuilder. It returns true if it is, or
false if it is not.

VERSION
The isSybaseEnabled method is not available in JBuilder 10.

public static boolean isTermLicense();
Determine whether the license expires. It returns true is it does, or false if it
does not. Use the getDaysLeft method to determine when the copy
expires.

public static boolean isTrial();
Find out is this is a Trial version of JBuilder. It returns true if it is, or false if
it is not.

public static void launchWizard();

public static void launchWizard(boolean immediate);
Bring up the JBuilder Registration Wizard with this method.
immediate is true to reload settings immediately, or false to wait until the
next restart.

VERSION
The first version of the launchWizard method above is only available in
JBuilder 7, while the last version is only available in JBuilder 8 and 9.

public static void setStatusMsg(String text, int type, int
timeout) ;
Display a message in the Status Pane (if it is available).

text is the string to display, or an empty string to clear the Status Pane.
type indicates the format for the displayed text. Use one of these values
from the StatusvView class (see Chapter 13): TYPE NORMAL, TYPE
WARNING, or TYPE ERROR.

timeout is the time in milliseconds after which the message is cleared. It
defaults to the value of TIMEOUT DEFAULT (10 seconds). You can also use

the TIMEOUT NONE value (from the Statusview class) for a permanent
message.

VERSION
The setStatusMsg method is only available in JBuilder 10.

public static void showInfoDialog();
Bring up the JBuilder Licensing dialog with this method.

30 Part III: The User Experience

Several of these methods are demonstrated in the UISampler class described at
the end of this chapter.

KeyStrokeDialog Class

Asking the user to select a keystroke combination can be easily achieved with the
com.borland.primetime.ui.KeyStrokeDialog class. It displays a popup
dialog box (see Figure 9-8) that lets the user enter a keystroke and select any
modification keys, such as Shift, Ctrl, or Alt. It is based around the KeyStroke-
EditorPanel class described later.

Figure 9-8. A KeyStrokeDialog.

& Select Keyztroke

Select event bype:

im0 Key Pressed (0 Key Released () Key Typed

Type any keystroke combination
Alt+F |

-Propetties

] Ctrl v Al [shift
[] Meta [] &le Graph

key code: | VE_F - |

oK [e][Help]

1 UNDOCUMENTED
\J Borland has not yet documented the KeyStrokeDialog class.

[S

Use the dialog as shown in the following code:

KeyStrokeDialog dialog =

new KeyStrokeDialog (frame, "Select Keystroke", true);
dialog.show();
KeyStroke keystroke = dialog.getKeyStroke();

The dialog’s methods are:

public KeyStrokeDialog() ;

public KeyStrokeDialog(Frame frame, boolean modal);

public KeyStrokeDialog(Frame frame, String title, boolean
modal) ;

public KeyStrokeDialog (Component component, String title,
boolean modal) ;
Create a new dialog box to ask the user for a keystroke combination.

frame is the parent frame for the dialog.

component is a control whose encompassing frame becomes the parent for
the dialog.

Chapter 9: Utility Classes 31

title is the title of the dialog.

modal is true to make the dialog modal, or false to make it non—modal.
public KeyStroke getKeyStroke();

Retrieve the keystroke selected by the user.

public void setDisplayOptions (boolean showEventType,
boolean showKeyReleased, boolean showKeyTyped) ;

Set all the display options in one go. These make the corresponding controls
on the editor panel visible or not.

showEventType is true to show the entire event type panel, or false to hide
it.
showKeyReleased is true to display the key released option, or false to hide
it.

showKeyTyped is true to show the key typed option, or false to hide it.
public void setKeyStroke (KeyStroke keystroke);
Set the initial keystroke to display to the user.

keystroke is the keystroke to show.

See the UISampler class at the end of this chapter for an example of the dialog’s
use.

KeyStrokeEditorPanel Class

The com.borland.primetime.ui.KeyStrokeEditorPanel class provides
for the full entry of a keystroke along with the event that triggers it (see Figure
9-9). This panel forms the main contents of the KeyStrokeDialog, and is a
wrapper around a KeyStrokeEditorTextField object.

Figure 9-9. A KeyStrokeEditorPanel.

keywstrokeEditorPanel

Select event bype:

(W) Kew Pressed () Key Released (1 Key Typed

Type any keystroke combination:

|CArl+Shift+F
Propetties
[l Ctrl] Al [¥] Shift
[] Meta [] Alt Graph
kKey code: |'-.-'K_F -
UNDOCUMENTED

Borland has not yet documented the KeyStrokeEditorPanel class.

The methods of the editor panel are listed below:

32

Part III: The User Experience

public KeyStrokeEditorPanel () ;

public KeyStrokeEditorPanel (KeyStrokeEditor
keystrokeEditor) ;

public KeyStrokeEditorPanel (KeyStroke keystroke, boolean
showKeyReleased, boolean showKeyTyped) ;

public KeyStrokeEditorPanel (boolean showEventType, boolean
showKeyReleased, boolean showKeyTyped) ;
Create a new keystroke entry panel with one of these constructors.

keystrokeEditor is an existing editor to use.
keystroke is the initial keystroke to show.

showEventType, showKeyReleased, and showKeyTyped are passed
through to the setDisplayOptions method. setEventType is true if not
specified.

public static KeyStroke decodeKeyStroke (String
keystrokeText) ;
Convert a text description of a keystroke into a KeyStroke object.
keystrokeText is the text version of the keystroke.

public static String encodeKeyStroke (KeyStroke keystroke);
Convert a keystroke into a corresponding text version, such as
“CTRL+SHIFT+VK F”.
keystroke is the keystroke to convert.

public String getJavalInitializationString();
Retrieve the keystroke value as a string suitable for inserting into Java source
code as an initial value.

public static String getKeyName (int keyCode) ;
Convert a key value into a text description using its name, such as
“VK_COMMA”.
keyCode is the code for the character to convert.

public KeyStroke getKeyStroke();
Obtain the keystroke entered into this panel.

public static String getKeyStrokeName (KeyStroke keystroke);

public static String getKeyStrokeName (KeyStroke keystroke,
boolean showEvent);
Convert a keystroke into a corresponding text description using the key’s
name, such as “Ctrl+Shift+VK F typed”.
keystroke is the keystroke to convert.
showEvent is true (the default) to include the event with the text, of false to
ignore it.

public static String getKeyStrokeText (KeyStroke keystroke);

public static String getKeyStrokeText (KeyStroke keystroke,
boolean showEvent);

public static String getKeyStrokeText (KeyStroke keystroke,
boolean showEvent, boolean useText);
Convert a keystroke into a corresponding text description using the key’s
text, such as “Ctrl+Shift+F typed”.
keystroke is the keystroke to convert.

showEvent is true (the default) to include the event with the text, of false to
ignore it.

Chapter 9: Utility Classes 33

useText is true (the default) to display the key text, or false to display the
key name.
public static String getKeyText (int keyCode);
Convert a key into a text description using its text value, such as “, ”.
keyCode is the code for the character to convert.
public KeyStroke getResult();
Obtain the keystroke entered into this panel.
public String getValueText ();
Retrieve the keystroke value as text.
public static String getVKText (int keyCode);
Convert a key into a text description using its name, such as “VK_COMMA”.
keyCode is the code for the character to convert.
public void resetFocus();
Move focus to the keystroke entry field and select all of its contents.
public void setDisplayOptions (boolean showEventType,
boolean showKeyReleased, boolean showKeyTyped) ;
Set all the display options in one go. These values make the corresponding
controls visible or not.
showEventType is true to show the entire event type panel, or false to hide
it.
showKeyReleased is true to display the key released option, or false to hide
it.
showKeyTyped is true to show the key typed option, or false to hide it.
public void setKeyStroke (KeyStroke keystroke);
Establish the keystroke to show initially.
keystroke is the new keystroke value to display.
public boolean stopEditing();
Call this method to translate the text entered by the user into a keystroke
value. It returns true if it can perform the conversion, or false if it cannot or if
there is no text to transform.

Look at the UISampler class at the end of the chapter for a demonstration of this
panel’s use.

KeyStrokeEditorTextField Class

For a text field that allows entry of a keystroke combination and displays it as
text, use the com.borland.primetime.ui.KeyStrokeEditorTextField
class.

UNDOCUMENTED
Borland has not yet documented the KeyStrokeEditorTextField class.

public KeyStrokeEditorTextField();

public KeyStrokeEditorTextField (KeyStroke keystroke);
Generate a new keystroke entry field.
keystroke is the initial value to set.

public KeyStroke getKeyStroke();
Retrieve the entered keystroke.

34 Part III: The User Experience

public boolean getShowEventType () ;
public boolean getShowKeyReleased() ;
public boolean getShowKeyTyped() ;
Get the current settings for these values. They all default to true.
public void setDisplayOptions (boolean showEventType,
boolean showKeyReleased, boolean showKeyTyped) ;
Set all the display options in one go. These are used in the editor panel for a
keystroke.

showEventType, showKeyReleased, and showKeyTyped are the values
for the corresponding options.
public void setKeyStroke (KeyStroke keystroke);
Establish the current keystroke value.
keystroke is the new setting.

public void setShowEventType (boolean show);

public void setShowKeyReleased (boolean show);

public void setShowKeyTyped (boolean show);
Set the new values for these settings. These are used in the editor panel for a
keystroke.

show is the new setting value.

For an example of this field, see the UISampler class at the end of this chapter.

ListPanel Class

Managing lists of items in a GUI is easily achieved by using the com.borland.
primetime.ui.ListPanel class. This abstract class provides for the display
of the list, the movement of items in the list, adding and removing items, and
editing items, as can be seen in Figure 9-10. You need to override at least the
editElement and promptForElement methods in your subclass. The rest of
the functionality is already supplied.

Figure 9-10. A ListPanel.

Cine Mew, .,
Two =
Faour
S
Six and a half
SEvVEn
Move Up
Mawe Diovn
UNDOCUMENTED

The ListPanel class is undocumented.

Its methods are shown below:

Chapter 9: Utility Classes 35

public ListPanel();

public ListPanel (boolean border);

public ListPanel (String addText, String editText, String
removeText) ;

public ListPanel (String addText, char addMnemonic, String
editText, char editMnemonic, String removeText, char
removeMnemonic) ;
Create a new list panel with one of these constructors. Settings for the
buttons on the panel may be supplied, with appropriate defaults being used
otherwise. I believe the button labels are localized, but have not been able to
confirm this. The defaults given below apply to English.
border is true (the default) to have an empty border around the panel, or
false to have no border.
addText is the label for the Add button, defaulting to “Add...”. Passing a
null for this, or one of the other labels, simply sets the button label to null,
but leaves the button visible and enabled.
addMnemonic is the accelerator character for the Add button. It defaults to
‘a’ if not specified.
editText is the label for the Edit button, defaulting to “Edit...”.
editMnemonic is the accelerator character for the Edit button. If not
specified it defaults to ‘E’.
removeText 1is the label for the Remove button, defaulting to

“Remove...”".

removeMnemonic is the accelerator character for the Remove button. It
defaults to ‘R’ if not specified.

VERSION
The ListPanel constructor version that takes a single boolean value is not
available in JBuilder 7.

public void addChangelistener (ChangelListener listener);
Register an object to be informed of changes to the list.
listener is the object to notify of changes.

public void addListElement () ;
Ask the user for a new item to add to the list, via the promptForElement
method, and then add it.

protected void addListElement (Object object);
Add the specified object to the end of the list.

object is the new list element. If this is an array, then each item in the array
is added separately.
protected boolean canAdd();
Determine whether a new item can be added to the list. The default version
always returns true, but this could be overridden in your subclass.
protected boolean canEdit (int index);
Decide whether an item can be modified. This class always returns true,
although you can modify this by overriding it in your descendent.

36

Part III: The User Experience

protected boolean canMoveDown (int index, int count);
protected boolean canMoveUp (int index, int count);
Control whether an item can be moved down or up within the list. Usually
these return true if not at the end or start of the list respectively. Override this
behavior if you want something different.
index is the current position of the item within the list.
count is the total number of items in the list.
protected boolean canRemove (int index);
Confirm that an item can be deleted from the list. All items may be removed
by default, however you could change this in your subclass.
index is the position of the item to be deleted.
protected void doubleClickElement (Object object);
By default, double—clicking an item causes it to be edited. Change this
behavior by overriding this method in your subclass.
object is the selected item.
protected abstract Object editElement (Object object);
You must override this method in your subclass to provide a meaningful way
of altering an item from the list. Return the updated item for replacement in
the list, or null to cancel the operation.
object is the item to edit.
public void editSelectedListElement () ;
This method calls the previous one for the currently selected item.
public void enableControls (boolean enabled);
Enable or disable all the controls in the panel through this method.
enabled is true to enable the controls, or false to disable them.
protected JButton getAddButton () ;
protected JButton getEditButton();
Get a reference to the named button on the panel.
protected String getElementName (Object object);
Retrieve the name of the given element. This returns the object’s toString
value unless overridden.
object is the item to be named.
public ArrayList getList();
Obtain a reference to the entire list of items.
public Component getListCellRendererComponent (JList list,

Object value, int index, boolean isSelected, boolean
cellHasFocus) ;
Return the component that renders the items within the list control. This
returns the defaultListCellRenderer object.

protected JScrollPane getListScrollPane();

protected JButton getMoveDownButton () ;

protected JButton getMoveUpButton() ;

protected JButton getRemoveButton();

Get a reference to the scroll pane or to the named button on the panel.
public int getSelectedIndex();
public int[] getSelectedIndices();
Retrieve the indexes of one or all of the selected entries. The methods return
—1 or an empty array if nothing is selected.

Chapter 9: Utility Classes 37

VERSION
The getSelectedIndex and getSelectedIndices methods are only
available in JBuilder 9 and 10.

public Object getSelectedListElement () ;
public Object[] getSelectedListElements();

Find the currently selected item(s) within the list, or null or an empty array
if no item has been chosen.

public ListSelectionModel getSelectionModel () ;
Get the selection model underlying the list panel.

VERSION
The getSelectionModel method is only available in JBuilder 9 and 10.

public void moveSelectedListElement (int offset);
Move the current item within the list.

offset is the distance from the current position to move, with negative
numbers indicating movement up the list. If the offset places the item outside
the bounds of the list, nothing happens.
protected abstract Object promptForElement () ;
You must override this method to create a new item. Return that item as the
result of the method call, or null to cancel the action.
public void removeChangelistener (ChangelListener listener);
Delete a previously registered listener for changes in the list.
listener is the object to remove from the list of listeners.
public void removeSelectedListElements () ;
Delete all the selected items from the list.
public void selectValue (Object object);
Establish which item is the current one.
object is the item to select.
public void setAddButtonVisible (boolean visible);
Control the visibility of the Add button with this method.
visible is true to show the button or false to hide it.
public void setEditButtonVisible (boolean visible);
Control the visibility of the Edit button with this method.
visible is true to show the button or false to hide it.
public void setEnabled(boolean enabled);
Enable or disable the entire component.
enabled is true to enable all the controls, or false to disable them.
public synchronized void setList (ArrayList list);
Load the contents of the list control from the supplied list. Any existing items
are deleted.
list is the list of items to be added.
public void setMoveButtonsVisible (boolean visible);
Control the visibility of the Move buttons with this method.

visible is true to show the buttons or false to hide them.

38 Part III: The User Experience

A single field is also available for use by a subclass:
protected DefaultListCellRenderer defaultListCellRenderer;
Access the renderer used for the items in the list through this field.

See the UISampler class at the end of the chapter for an example of the panel’s
use. Also, the OpenTools runner example in Chapter 26 makes use of a

ListPanel.

PackageBrowserDialog Class

Searching for a class is made easier with the com.borland.jbuilder.ide.
PackageBrowserDialog class, which builds on the DefaultDialog class. In
fact, JBuilder uses this for the Browse Classes action as shown in Figure 9-11.
You need to create a PackageBrowserTree instance for it to work with, or you
can call the static methods on PackageBrowserTree to build the tree and then
display the dialog. See the next section for more details.

Figure 9—11. A PackageBrowserDialog.
f-_Tj Find Classes

Browse | Search |

Class name: |java_i|:|_Eh,fteArraylnp utStream

i audio
e Com
[m cam
{3 Fonts
[@ ice
[@ images
= [@ java
& applet
[ﬂ awk
G5 beans
= o
®3 Bits
®3 BufferedInputStream
®3 BufferedOutputStream
®3 BuffersdReader
®3 Bufferedriter
®2 BytedrrayInpubStrean

{‘i BvtenrrayOutpukSkreann
B3 rhardrravbeadsr

-

[K][Cancel][Help]

1 UNDOCUMENTED
\ This class is undocumented in JBuilder.

[S

Its methods are shown below:

Chapter 9: Utility Classes 39

public PackageBrowserDialog (Component component, String
title, PackageBrowserTree tree, boolean[] flags);

public PackageBrowserDialog (Component component, String
title, PackageBrowserTree tree, boolean[] flags, String
caption);
Create a new browser dialog.
component is a component whose frame becomes the owner of this dialog.
title is the caption for the dialog window.
tree is the tree that contains the class hierarchy.
flags is updated and returned. The first entry in the array is set to true if a
package is selected, or false if the dialog is cancelled. You should pass in a
boolean array with a single element.
caption is the text to display before the text box on the Browse tab. It
defaults to “Class name:”.

VERSION
The constructor that takes the caption parameter is not available in JBuilder 7.

public void closeDialog() ;
Close the dialog and dispose of it.
public boolean getAllowPackages();
Returns true if packages may be selected along with classes, or false if only
classes can be chosen.
public boolean isAddToProjectEnabled();
Determine whether the Add to Project checkbox is enabled.
public boolean isAddToProjectSelected();
See whether the Add to Project checkbox is selected. It only returns true if
the checkbox is visible as well as selected.
public boolean isAddToProjectVisible();
Find out whether the Add to Project checkbox is visible to the user.
public boolean isClassComboVisible () ;
Determine whether the combobox of previously selected class names is
visible.
public void setAddToProjectEnabled (boolean enabled) ;
Enable or disable the Add to Project checkbox.
enabled is true to enable the checkbox, or false to disable it.
public void setAddToProjectSelected(boolean selected);
Set the initial state of the Add to Project checkbox.
selected is true to make it checked, or false to clear it.
public void setAddToProjectVisible (boolean visible);
Show or hide the Add to Project checkbox.
visible is true to display the checkbox, or false to hide it.
public void setAllowPackages (boolean allowPackages);
Establish what may be selected from the class hierarchy.
allowPackages is true to let the user select a package or a class, or false to
only allow classes to be chosen.
public void setClassComboVisible (boolean visible);
Alter the visibility of the combobox that displays previously selected classes.

40 Part III: The User Experience

visible is true to have it appear, or false to remove it.

public static String showClassBrowserDialog (Component
component, String title, PackageBrowserTree tree);

public static String showClassBrowserDialog (Component
component, String title, PackageBrowserTree tree,
boolean allowPackages) ;

public static String showClassBrowserDialog (Component
component, String title, PackageBrowserTree tree,
boolean allowPackages, String caption);

Use these static methods to easily bring up the dialog and return a selection.
A null is returned if the dialog is cancelled. You can also use the static
methods on the PackageBrowserTree class.

component is a component whose frame becomes the owner of this dialog.
title is the caption for the dialog window.

tree is the tree that contains the class hierarchy.

allowPackages is true to let the user select a package or a class, or false
(the default) to only allow classes to be chosen.

caption is the text to display before the text box on the Browse tab. It

9

defaults to “Class name:”.

VERSION
The showClassBrowserDialog method that takes the caption parameter is
not available in JBuilder 7.

public void showHelp () ;
Call up the help topic for this dialog.

public static String showPackageBrowserDialog (Component
component, JBProject project);

public static boolean showPackageBrowserDialog (Component
component, String title, PackageBrowserTree tree);
Display the dialog to select a package only. The first version returns the
name of the package, while the latter returns true if a package is chosen, or
false if the dialog is cancelled. For the latter, you would then have to query
the tree for the selected package(s).

component is a component whose frame becomes the owner of this dialog.
project is the project to use for finding packages to be displayed.

title is the caption for the dialog window.

tree is the tree that contains the class hierarchy.

PackageBrowserFiIter Interface

The com.borland.jbuilder.ide.PackageBrowserFilter interface
allows you to select which nodes are shown in a PackageBrowserTree object.

UNDOCUMENTED
This interface is undocumented in JBuilder.

Its one method is:
public Node[] packageFilter (Node[] nodeArray);
Given an array of nodes, remove those that do not apply and return the result.

Chapter 9: Utility Classes 41

The PackageOnlyPackageBrowserFilter class in the same package
provides a filter that selects only packages.

PackageBrowserTree Class

Searching for a class is made easier with the com.borland.jbuilder.ide.
PackageBrowserTree class. It provides a tree view of the class hierarchy and
extends SearchTree (see below) so that you can look for items by typing within
the tree control. See Figure 9—12 in the PackageBrowserDialog class above
for an example.

UNDOCUMENTED
This class is undocumented in JBuilder.

To use this class to have the user select a known class, you could use code like

the following:

String className = PackageBrowserTree.browseClass (
(JBProject)Browser.getActiveBrowser () .getActiveProject (),
null, "Find a Class", null);

if (className != null && className.length() > 0) {

// Do something with it
}

The new methods of this class are shown below:

public PackageBrowserTree() ;

public PackageBrowserTree (Project project);

public PackageBrowserTree (Project project,
PackageBrowserFilter filter);

public PackageBrowserTree (Project project,
PackageBrowserFilter filter, int mode);
Create a new tree control that displays classes from a project’s classpath.

project is the project whose classpath is used to locate classes. If not
specified here you must use the setProject method to set it before using
this tree.

filter is a filter that selects which entries in the tree are displayed.

mode is the mode of the package nodes that make up the tree. Use the
MODE_* constants from the JBProject class (see Chapter 6).

public static String browseClass (JBProject project,
Component component, String title, String initialPath);

public static String browseClass (JBProject Project,
Component component, String title, String initialPath,
boolean needExistingClass);

public static String browsePackageOrClass (JBProject
project, Component component, String title, String
initialPath) ;
Display a dialog box that lets the user search for a class, or a package,
anywhere on a particular classpath. The return value is the full name of the
class or package selected, or null if the dialog was cancelled.
project is the project to use to determine the classpath to search.

component is a component whose frame becomes the owner for this dialog.
It may be null is there is no owner.

title is the caption for the dialog box.

42

Part III: The User Experience

initialPath is the class or package to display initially. If this is null or
an empty string, the last class found is used.

needExistingClass is true (the default) if an existing class must be
chosen, or false if a new name may be entered.

VERSION
The browseClass method that takes the needExistingClass parameter is

only available in JBuilder 9 and 10.

public TreePath getFarthestPath (String path);
Find the tree path that matches or is just past the given path and return it. See
the same method in SearchTree for more details and an example.

path is the full path to attempt to follow.

VERSION
The getFarthestPath method is only available in JBuilder 9 and 10.

public String getFullPath (TreePath path);

public String getFullPath (TreePath path, boolean
allPackage) ;
Return the full name for the given path, or an empty string if the path is

null.
path is the path to retrieve.
allPackage is true to append “.*” if a package is selected, or false (the
default) to omit it.
public int getMode() ;
Retrieve the current mode of the packages within the tree. It should be one of
the MODE_* constants from JBProject.
public PackageBrowserFilter getPackageBrowserFilter();
Return the current filter applied to this tree, or null if none has been
specified.
public Node getPathNode (TreePath path);
Retrieve the node at the end of a path.
path is the path to follow to find the node.
public Node[] getPathNodes (TreePath[] paths);
Return the list of nodes corresponding to the given paths.
paths is the list of paths to convert into nodes.

public Project getProject();
Find the project associated with this browse tree.

VERSION
The getProject method is not available in JBuilder 7.

public Node getSelectedNode () ;
Get the currently selected node from the tree, or null if no node has been
chosen.

public Node[] getSelectedNodes();
Obtain a list of all the selected nodes from the tree, or an empty array if none
were picked.

Chapter 9: Utility Classes 43

public String getSelectedPath();
public String getSelectedPath (boolean allPackage);

Retrieve the full name of the currently selected package or class, or null if
no path was chosen.
allPackage is true to append “.*” if a package is selected, or false (the
default) to omit it.

public String getSelectedPaths (boolean allPackage);
Retrieve the full names of all the currently selected packages or classes, or an
empty array if none have been chosen.
allPackage is true to append “.*” if a package is selected, or false (the
default) to omit it.

public boolean isClassNameInTree (String className) ;
Determine whether a particular class is present in the tree, returning true if it
is, or false if it is not.
className is the full name of the class to find, like “java.util.
Vector”.

public boolean isPackageName (String packageName) ;
Discover whether a certain package is in the tree, returning true if it is, or
false if it is not.
packageName is the full name of the package to check, such as “java.
util”.

public void setMode (int mode) ;
Alter the mode of the packages in the tree.
mode is the new mode. It should be one of the MODE * constants from
JBProject (see Chapter 6)

public void setPackageBrowserFilter (PackageBrowserFilter
filter);
Modify the filter applied to items in the tree.

filter is the new filter to apply to the tree, or null to show all entries.

public void setProject (Project project);
Set the project to scan for packages.

project is the project used to locate packages.

public void setSelectedPath(String path);
Establish the current path.

path is the full path to the required package or class.

PathSet Class

Managing a collection of paths, such as for a library definition within JBuilder, is
the job of the com.borland.jbuilder.paths.PathSet class. It keeps track
of the paths for the source, class, and documentation files, and any other libraries
that it depends on. Although the class has constructor and update methods, you
usually just retrieve an existing instance and query it for information:

PathSet library
Url[] classPath

(PathSet)PathSetManager.getLibraries () .get (0);
library.getClassPath();

The methods of this class are:

44 Part III: The User Experience

public PathSet (String name) ;
Create a new set of paths for a library.
name is the name for this set — the library name. It must not be null.

public synchronized int addEntries(Url url);
Scan the supplied location recursively (a directory or a JAR file) for
candidates as source, class, or documentation (Javadoc) paths. Source paths
contain . java files, class paths contain .class or . jar files, and document
paths contain index-all.html. These are added to the appropriate internal
lists. The return value is the number of directories to back up to continue
searching. If this is zero you resume your search in the current directory. If it
is one you should move to the parent of the current directory before
continuing, etc.
url is the starting location for the scan.

public static void addUniquePath (List 1list, Url url);

public static Url[] addUniquePath (Url[] oldPath, Url url);
Add a given path (Url) to a list or array of paths, but only if it is not already
there. The list is updated, or an amended array of paths is returned.
list is the list of paths to examine and add to.
oldPath is the array of paths to use as the basis for adding the new path.

url is the new path to add, when appropriate.

VERSION
The addUniquePath methods are protected and non-static in JBuilder 7.

public static void addUniquePaths (List list, PathSet[]
pathSets) ;

public static void addUniquePaths (List list, Url[] urls);

public static void addUniquePathsIfEnabled(List list, Url[]
urls);

Update a list of paths to include an array of Urls or PathSets, but only if
they are not already present. The addUniquePathsIfEnabled method
imposes a further restriction — that the new paths not be disabled by the
current edition of JBuilder (Enterprise/SE/etc.).

list is the list of paths to examine and add to.

pathSets is the array of path sets to include, when appropriate.

url is the array of new paths to add, when appropriate.

VERSION
The addUniquePaths* methods are protected and non-static in JBuilder 7.

public synchronized void delete();

Delete this library’s file from permanent storage and also from its collection.
public synchronized Url[] getClassPath();

Return the list of locations that make up the class path for this library.
public synchronized PathSetCollection getCollection();

Obtain a reference to the collection that this library is a member of.

Chapter 9: Utility Classes 45

NOTE

The PathSetCollection class is not covered here, but it encapsulates the
groupings within the Configure Libraries and Configure JDKs dialogs, such as
Project, User Home, and JBuilder. From these objects you can find out which
libraries and JDKs it manages, and update these lists.

public PathSet getCopy(PathSetCollection collection);
Copy this set of paths and return a reference to it.
collection is the collection to add the new set of paths to.
public synchronized Url[] getDocPath();
Return the list of locations that make up the documentation path for this
library, such as file:///C%|/JBuilder/OpenTools/Javadoc/doc.
public synchronized String getEmptyDescription();
Get the description for an empty library.

VERSION
The getEmptyDescription method is not available in JBuilder 7.

public synchronized Url[] getFullClassPath{();

public synchronized Url[] getFullDocPath();

public synchronized Url[] getFullSourcePath();
Combine the appropriate set of paths from this library with the corresponding
ones from all of its required libraries and return the entire collection. For
example, the full class path may include:
file:///C%|/JBuilder/OpenTools/Javadoc/class
zip:///[C%|/JBuilderX/lib/jbuilder.jar]

public String getFullName () ;
Retrieve the name of this library. It appears to be identical to getName.

public Icon getIcon();
Obtain an icon for this library.

public synchronized String getIncompleteDescription()
Get the description for an incomplete library, typically “Library is
incomplete”.

public long getlastModificationSaved();
Find out when this path set was last modified, returning a standard timestamp
value (which may be zero).

VERSION
The getLastModificationSaved method is only available in JBuilder 9 and
10.

public long getLastModified();
Contrary to what the documentation says, this value is not a timestamp, but is
a sequential number starting from zero that gets incremented each time
significant changes are made to the path set. Modifications to the full paths
returned by this library may occur through objects other than this one.
public synchronized LibKit getLibKit () ;
Obtain a reference to the library kit for this path set. The returned class is not
covered in this book.

VERSION
The getLibKit method is not available in JBuilder 7.

46

Part III: The User Experience

public synchronized String getName () ;
Retrieve the name of this library.
public Class getPathSetReferenceClass();
Get a reference to the Pathset class.
public TreeMap getProperties();
public String getProperty(String category, String name);
public String getProperty(String category, String name,
String defaultVvalue);
Find one or more property values for this path set. These are initialized via
the setProperty method.

category is the name of the property category.
name is the name of the individual property.
defaultvValue is the value to use if no other one can be found.

VERSION
The getProperties and getProperty methods are only available in JBuilder
9 and 10.

public synchronized String getReferenceName (PathSet
pathsSet) ;
Supplies the name to use in property values to identify this path set.
Typically this is the same as getName returns.

VERSION
The getReferenceName method is only available in JBuilder 9 and 10.

public synchronized PathSet[] getRequired();
public synchronized String[] getRequiredNames () ;
Obtain a list of the other libraries required by this one, as either path set
objects or just as names. If there are none, an empty array is returned.
public synchronized PathSetResolver getResolver();
Find the resolver used to look up libraries. This class is not covered in this
book.

VERSION
The getResolver method is protected prior to JBuilder 10.

public synchronized Url[] getSourcePath();
Return the list of locations that make up the source path for this library, like
file:///C%|/JBuilder/OpenTools/Javadoc/src

public Url getUrl();
Discover the location of the file where this library definition is stored, such
as file:///C%|/Documents and Settings/keith/.jbuilderX/
Project.library

public synchronized boolean isEmpty();
Find out if this library contains any path information. It returns true if no
paths have been set or false if any have.

public synchronized boolean isEnabled();
Determine whether this library is enabled, returning true if all the entries on
the class path are enabled (based on the restrictions imposed by JBuilder
editions, such as the JBCL classes not being available in the Personal
version), or false otherwise.

Chapter 9: Utility Classes 47

public synchronized boolean isIncomplete();
Discover whether this library is incomplete in some way. The default value is
false, but this may be overridden in subclasses. Incomplete libraries are
grayed out in the UL

public synchronized boolean isReadOnly () ;
Returns true if this library is read—only, or false if it may be updated.

public static Url[] pathFromString(String path);

public static Url[] pathFromString(String path, boolean
asArchive);

public static Url[] pathFromStringArray(String[] paths);

public static Url[] pathFromStringArray(String[] paths,
boolean asArchive);

public static Url[] pathFromStringArray(String parentPath,
String[] paths);

public static Url[] pathFromStringArray(String parentPath,
String[] paths, boolean asArchive);
Convert from string representations of paths to Ur1ls.

path is a classpath list to separate out and convert.
parentPath is the base path to use with the list of (relative) paths.

paths is an array of paths to convert. The values are relative paths in the
case of the last two versions of this method.

asArchive is true (the default) to format the Url as a JAR reference when
appropriate, or false to leave it as a simple file name.

VERSION
The last two versions of the pathFromStringArray method are not available
in JBuilder 7.

public static String pathToString (Url[] path);

public static String pathToString(Url[] path, boolean
resolvePaths) ;

public static String[] pathToStringArray(Url[] path);

public static String[] pathToStringArray (Url[] path,
boolean resolvePaths);
Convert an array of path Urls into their string versions — either as a single
classpath, or as an array of file names.

path is the array of Ur1ls to convert.
resolvePaths 1is true to resolve paths to their platform—specific
representation, or false to use the generic format. For example, when true on
a Windows platform, the path “/JBuilder/OpenTools” becomes
“C:\JBuilder\OpenTools”.

VERSION

The method versions above that take the resolvePaths parameter are not
available in JBuilder 7.

public void resetFullPaths();
Reset the internal timestamp to force a full update.

public synchronized void save();
Save the definitions for this library to permanent storage.

public synchronized void setClassPath (Url[] classPath);
Alter the list of paths that make up the class path for this library.

48 Part III: The User Experience

classPath is the new set of locations.

public synchronized void setCollection (PathSetCollection
collection);
Change the collection to which this library belongs.

collection is the new collection.

public synchronized void setDocPath(Url[] docPath);
Modify the list of paths that make up the documentation path for this library.
docPath is the new set of locations.
public void setFromCopy (PathSet pathSet);
Copy another PathSet’s details to this one.
pathset is the set of paths to copy.

public synchronized void setLibKit (LibKit 1ibKit);
Establish the library kit to use.

1ibKit is the new library kit. This class is not covered in this book.

VERSION
The setLibKit method is not available in JBuilder 7.

public synchronized void setName (String name) ;
Update the library’s name.
name is the new name. It must not be null.

public void setProperty(String category, String name,
String value);
Set a property value for this path set.

category is the name of the property category.
name is the name of the individual property.
value is the value to use.

VERSION
The setProperty method is only available in JBuilder 9 and 10.

public synchronized void setRequired(String required);

public synchronized void setRequired(String[] required);
Change the list of other libraries required by this one.
required is one or more names of other libraries.

public synchronized void setSourcePath (Url[] sourcePath);
Modify the list of paths that make up the source path for this library.
sourcePath is the new set of locations.

public synchronized void setUrl (Url storagePath);
Establish the location where this library definition is saved.

storagePath is that location.

A single public field is defined in the class:

public static final PathSet EMPTY ARRAY[];
This is the return value for appropriate methods when there are no paths of
the requested type.

The JDKPathSet and ProjectPathSet classes extend this class to provide
additional support for defining JDKs and projects.

Chapter 9: Utility Classes 49

Platform Class

When it becomes necessary to identify which platform your tool is running on,
you can use the abilities of the com.borland.primetime.util.Platform
class to help you out.

UNDOCUMENTED
This class has not yet been documented.

It provides two methods:

public static boolean isMacLAF () ;
Returns true if the Mac look—and—feel is in use, or false if it is not.

public static boolean isSpecialDown (MouseEvent mouseEvent) ;
Determine whether a mouse event is a special case on this platform (it occurs
while a particular key is pressed), returning true if it is, or false if it is not.

mouseEvent 1s the mouse event to examine.

The following constants are also available:
public static final boolean IBM LINUX;
True if running IBM’s version of Linux, false otherwise.
public static final boolean IBM VENDOR;
True if running under IBM’s JVM, false otherwise.
public static final boolean LINUX;
True if running under Linux, false otherwise.
public static final boolean MAC;
True if running on a Macintosh, false otherwise.
public static final String OS NAME;
The name of the operating system under which the tool is running.
public static final boolean SOLARIS;
True if running under Solaris, false otherwise.
public static final boolean STANDALONE DDEDITOR;
True if running the stand-alone deployment descriptor editor, false
otherwise.
public static final boolean UNIX;
True if running under some form of Unix, false otherwise.
public static final boolean WIN32;
True if running under Windows, false otherwise.

Several of these fields are used within the UISampler class described at the end
of this chapter.

ProjectPathSet Class

The com.borland.jbuilder.paths.ProjectPathSet class provides more
detailed information about the paths associated with a project, compared to the
PathSet class it derives from. Although constructor and update methods are
available, normally you would just retrieve an instance from a JBuilder project
and query it for information:

ProjectPathSet paths = jbproject.getPaths();
Url backup = paths.getBakPath() ;

50

Part III: The User Experience

UNDOCUMENTED
The ProjectPathSet class was not documented until JBuilder 9.

Its additional methods are:
public ProjectPathSet (JBProject project);
Create a new path set for a project. Normally you just retrieve the one
supplied by each JBuilder project.
project is the JBuilder project to report on.
public synchronized void addProjectLibrary (PathSet
library);
Add a project-specific library to the path set.

library identifies the project to add.

VERSION
The addProjectLibrary method is only available in JBuilder 9 and 10.

public synchronized Url[] getAuxPath (String pathId);
public synchronized Map getAuxPaths () ;
Returns one or all of the auxiliary path entries for this path set.

pathId identifies the set of entries to retrieve.

VERSION
The getAuxPath and getAuxPaths methods are only available in JBuilder
10.

public synchronized Url getBakPath();

Find the directory used for backups of files from a project, like file:///
%|/JBuilder/OpenTools/Javadoc/bak

public synchronized Url getDefaultSourcePath () ;
Returns the location established by setDefaultSourcePath. If this has
not been set then it returns first entry in the source path, or the default
(“src”) if there are none.

public synchronized PathSetCollection[] getFullLibPath () ;
Retrieve the complete set of library collections through this method. This
would include the top—level nodes from the Configure Libraries dialog:
Project, User Home, and JBuilder.

public boolean getIncludeTestPath();
Discover whether or not the test path is included in the project’s paths.

public synchronized JDKPathSet getJDK(String name) ;
Locate a particular JDK reference, or the default one (first in the list) if the
given name cannot be found. The returned class derives from PathSet but
is not otherwise covered in this book.
name is the name of the JDK to find.

public synchronized JDKPathSet getJDKPathSet () ;
Get the default (first in the list) JDK reference.

public synchronized ArrayList getJDKs () ;
Retrieve the JDK references known to this project. Each item in the returned
list is a JDKPathSet object.

Chapter 9: Utility Classes 51

public synchronized LibKit[] getLibKits (Class classRef);
Return the list of library kits associated with a particular class. The returned
class is not covered in this book.
classRef is the class to find the library kits for.

VERSION
The getLibKits method is not available in JBuilder 7.

public synchronized Url getLibPath() ;
Find the location of the base for this project, such as file:///
%|/JBuilder/OpenTools/Javadoc
public synchronized ArraylList getLibraries();
Discover all the available libraries. Each item in the returned list is a
PathSet object.
public synchronized PathSet getlLibrary(String name) ;
Find a reference to a specific library.
name is the name of the library to locate.
public String getName () ;
Obtain the name for this path set (based on its Url).

VERSION
The getName method is not available in JBuilder 7.

public synchronized Url getOutPath();
Get the output directory for the compiled class files, like file:///C%|/
JBuilder/OpenTools/Javadoc/classes.

public static long getPathTime () ;
Retrieves the last modification time for the project’s paths.

WARNING

The getPathTime method has been deprecated as the PathSetManager
now takes care of this functionality.

public synchronized PathSetCollection
getProjectlLibraries();
Returns the collection of path sets that reflect the libraries for this project.

VERSION
The getProjectLibraries method is not available in JBuilder 7.

public synchronized Url[] getResourcePath();
Provides the set of source paths for the project plus any auxiliary paths.

VERSION
The getResourcePath method is only available in JBuilder 10.

public synchronized Url getTestPath();
Get the location of the test path for this project, like file:///C%|/
JBuilder/OpenTools/Javadoc/test

public synchronized Url getWorkingDirectory();
Retrieve the working directory for this project, like file:///C%|/
JBuilder/OpenTools/Javadoc

52 Part III: The User Experience

public boolean putClassOnFullPath(String className) ;

public boolean putClassOnFullPath (String className, String
libraryName) ;
Add the path for a particular class to the required list for this path set, if it is
not already there. The method returns true if the path was actually added, or
false if was already present.
className is the full name of the class to add.
libraryName is the name of the library to make the first one in the path.
The path order is not changed if this is null (the default).

VERSION

The second putClassOnFullPath method is not available in JBuilder 7.

public synchronized void reloadLibraries();
Discard any existing library definitions and re-read them from permanent
storage.

public synchronized void setAuxPath (String pathId, Url[]
auxPath) ;
Update the set of auxiliary paths for this project.
pathId is the identifier for this path.
auxPath is the set of Urls for this auxiliary path.

VERSION
The setAuxPath method is only available in JBuilder 10.

public synchronized void setBakPath (Url bakPath);
Alter the directory used for storing backups of files changed in the project.
bakPath is the new directory.

public synchronized void setDefaultSourcePath (Url url);
Establish the location of the default source path.
url is the location to use.

public synchronized void setFullLibPath (
PathSetCollection[] collections);
Update the complete set of library collections, as is found in the top—level
nodes from the Configure Libraries dialog: Project, User Home, and JBuilder.
collections is the list of collections to add.

public void setIncludeTestPath (boolean include) ;
Update whether or not the test path is included in the project’s path.
include is true (the default) to include the test path, or false to exclude
them.

public synchronized void setJDKPathSet (JDKPathSet jdkPath);
Alter the JDK associated with this project.
jdkPath is the new JDK reference.

public synchronized void setJDKs (ArrayList jdks);
Change the locations of the JDKs for this project.
jdks is a list of PathSets for the JDKs.

public synchronized void setLibPath (Url libPath);
Modify the base path for the project.
libPath is the new path.

Chapter 9: Utility Classes 53

public synchronized void setlibraries (ArrayList libraries);
Update the list of libraries for this project.

libraries is alist of PathSets for the new libraries.

public synchronized void setOutPath (Url outPath);
Change the directory to which compiled classes are written.

outPath is the new directory.

public synchronized void setTestPath (Url url);
Establish the location of the test path for this project.

url is the test path location.
public synchronized void setWorkingDirectory (Url workDir);
Alter the working directory for the project.

workDir is the new directory.

RegularExpression Class

The com.borland.primetime.util.RegularExpression class provides
simple regular expression handling. It only knows about three special characters:
“*” matches with the shortest possible sequence of characters, including none,
“?” matches with any single character, and “\” escapes the following character,
allowing these three to be matched exactly.

The following example shows how a RegularExpression object is used to
filter a list of file.
File dir = new File("c:/JBuilderX/jdkl.4/bin");
File[] files = dir.listFiles();

RegularExpression regexp = new RegularExpression ("java*.exe");
System.out.println("Java files in " + dir.getAbsolutePath());

for (int index = 0; index < files.length; index++) {
if (regexp.exactMatch(files[index].getName())) {
System.out.println(" " + files[index].getName());

}

}

The class’ abilities are described below:

public RegularExpression (String pattern);

public RegularExpression (String pattern, boolean
caseSensitive);
Create a new expression to test against. The break on new line and pattern
match attributes are both set to true. See their set methods below for their
meanings.
pattern is the string of characters to be matched, including any special
characters described above.
caseSensitive is true (the default) if the pattern is case—sensitive, or false
if it ignores case when matching.

public boolean exactMatch (String test);

public boolean exactMatch (char[] test);

public boolean exactMatch (char[] test, int startIndex, int
endIndex) ;
Determine whether the pattern matches the given value in its entirety,
returning true if matched and false if not.
test is the value to check against the pattern, either as a string or an array of
characters.

54 Part III: The User Experience

startIndex is the position in the array to start matching at.
endIndex is the position after the position in the array to stop at.

public MatchResult findSubstringMatch (String test);

public MatchResult findSubstringMatch (char[] test, int
startIndex, int endIndex):;
Locate the position in the given value that matches with this pattern. It
returns a MatchResult object that describes the match if found, or
RegularExpression.NO MATCH if not found.
test is the value to check against the pattern, either as a string or an array of
characters.

startIndex is the position in the array to start matching at.

endIndex is the position after the position in the array to stop at.
public int getLength();

Get the length of the expression.

VERSION
The getLength method is only available in JBuilder 10.

public boolean isBreakOnNewline();
Find out whether the pattern allows newline characters to match with the
pattern. It returns true if newline characters do match, or false if they do not.

g

public boolean isCaseSensitive();
Return whether or not this pattern is case—sensitive.

public boolean isPatternMatch();
Discover whether any special characters are in fact treated specially. It
returns true if special characters retain their pattern meanings, or false if all
characters are treated as literal values.

public boolean isRegExpMatch () ;
Find out how wildcard characters and escape sequences are treated. When
true, they are evaluated as regular expression values according to the JDK
1.4 regexp engine, but when false (the default) they are treated as literal
characters.

VERSION
The isRegExpMatch method is not available in JBuilder 7.

public static boolean isSpecialChar (char character);
Determine whether a particular character has a special meaning within a
pattern and so needs to be escaped to match it literally. It returns true if the
character is special and false otherwise.
character is the value to test for a special meaning.

public boolean prefixMatch(String test);

public boolean prefixMatch (char[] test);

public boolean prefixMatch (char[] test, int startIndex, int
endIndex) ;

Find out whether the pattern matches a given value at its beginning, returning
true if matched and false if not.

test is the value to check against the pattern, either as a string or an array of
characters.

Chapter 9: Utility Classes 55

startIndex is the position in the array to start matching at.
endIndex is the position after the position in the array to stop at.

public void setBreakOnNewline (boolean breakOnNewline) ;
Establish whether the pattern allows newline characters to match with the
“x> pattern.
breakOnNewline is true (the default) if newline characters do match, or
false if they do not.

public void setPatternMatch (boolean patternMatch) ;
Set whether any special characters are treated specially.
patternMatch is true (the default) to interpret special characters with their
pattern meanings, or false to treat all characters as literal values.

public void setRegExpMatch (boolean regExpMatch) ;
Control how wildcard characters and escape sequences are treated.
regExpMatch is true to evaluate them as regular expression values

according to the JDK 1.4 regexp engine, or false to treat them as literal
characters.

VERSION
The setRegExpMatch method is not available in JBuilder 7.

public int substringMatch(String test);

public int substringMatch (char[] test);

public int substringMatch (char[] test, int startIndex, int
endIndex) ;

Check whether the pattern matches any portion of the given value, returning
the index where the match was found, or —1 if no part matched.

test is the value to check against the pattern, either as a string or an array of
characters.

startIndex is the position in the array to start matching at.

endIndex is the position after the position in the array to stop at.

In addition, the class defines several constants for your use:
public static final MatchResult NO MATCH;

The result of a findSubstringMatch call that fails to find any match.
public static final char CHAR ANY;

The “?” character that matches with any single character.
public static final char CHAR ESCAPE;

The “\” character that allows other characters to be interpreted literally.
public static final char CHAR WILDCARD;

The “*” character that matches with any number of characters, including
none.

RegularExpression.MatchResult Class

The result of a findSubstringMatch call on a RegularExpression object is
an instance of the com.borland.primetime.util.RegularExpression.
MatchResult class. It encapsulates the location of the matched text within a
string or character array. If no match is found the RegularExpression.
NO_MATCH instance is returned instead.

56 Part III: The User Experience

Use the following methods with this class:
public int getLength();

Retrieve the length of the matched text.
public int getStartIndex();

Find the starting position of the matched text.
public void setStartIndex(int newlIndex);

Set the starting position.

newIndex is the new starting position.

SearchTree

You may have noticed that the tree components that appear within JBuilder’s
IDE have the ability to search through their contents. Simply start typing the
name of the item you are trying to find when the tree has focus and JBuilder
starts scanning. A popup window appears to show what you have typed, while
the currently matching item is highlighted within the tree. You can step through
all the items that match the current value by pressing the up and down arrow
keys. Figure 9—12 shows the searching abilities in action.

Figure 9-12. A SearchTree.
[E] Project

Search for: iaptagp| e

7 Doco
= 05 wood keith opentaals. wizards, jsptags
isptaglé. gif
jsptag3z. gif
Eﬁ, J=PTagExtraGensrakor java
lf_i J5PTagizenerakor. java
lf_i JSPTagProperties.java
lf_i J5PTagwizard. java
lf_i 15PTagwizardPage. java
lf_i ProjectlassLoader . java
lf_i Res.java
Res.properties
taglibl . oif gl
taglb3z . gif -

These abilities are captured in the com.borland.primetime.ui.Search-
Tree class that extends the Swing JTree component. The functionality is based
on the assumption that the text displayed in the tree for each node is the same as
that returned by the node’s toString method and will not work correctly if this
is not so.

VERSION
In JBuilder 10 SearchTree also implements java.awt.dnd.AutoScroll.

To add this functionality to your own tools, all you need to do is to use the
SearchTree class wherever you were using JTree.
Additional features of the new class include:

Chapter 9: Utility Classes 57

public void enableDragDrop (boolean enable);

Enable or disable drag-and-drop support for nodes that are instances of

DraggableNode (not otherwise covered in this book).
enable is true to enable drag-and-drop support, or false to disable it.

VERSION
The enableDragDrop method is only available in JBuilder 10.

public Arraylist getExpansionState();
Retrieve a list of all the expanded TreePaths in the tree.
public TreePath getFarthestPath(String path);
public TreePath getNearestPath (String path);
public TreePath getNearestPath (String[] stringPath);

Convert a partial path into an entry in the tree. The first method returns the
path of the item equal to or immediately after the entered string value, while
the second returns that path’s parent if not an exact match, or the same path if
the string value is a full path already. Case is ignored in the matching
process.

For example, in the package/class browser, a path parameter of
“Java.util.co” returns “java.util.Collection” for the farthest and
“Java.util” for the nearest paths. Passing “java.util” to these methods
returns “java.util” from both.

path is the path to start from, with periods (.) separating levels in the tree.
stringPath is the path to start from, broken up into separate array

elements.
VERSION

The getNearestPath method that takes an array of strings is only available in

JBuilder 10.

public int getPreserveMode () ;

Retrieve the current preserve mode setting for the tree. See setPreserve-

Mode for more details.
public ArraylList getSelectionState();

Return the current selections within the tree as an array. Each item in the
array is another array, this time of strings, representing the individual levels

in the path for each selection.
public String[] getStringPath (TreePath path);
Separate out the element names on a path into an array.

path is the path to separate out.

VERSION
The getStringPath method is only available in JBuilder 10.

public void selectNearestPath (String path);
Find the entry in the tree nearest to the given path and select it.

path is the path to start from, with periods (.) separating levels in the tree.

VERSION
The selectNearestPath method is not available in JBuilder 7.

58 Part III: The User Experience

public void setDefaultTooltipEnabled(boolean enabled);
Indicate whether or not to show the standard JTree tooltips — for those
nodes whose text is truncated.

enabled is true to show the tool tips, or false (the default) to suppress them.

VERSION
The setDefaultTooltipEnabled method is only available in JBuilder 10.

public void setExpansionState (ArrayList expandList);
Alter which nodes in the tree are expanded.
expandList is a list of all the TreePaths to be expanded in the tree.
public void setPreserveMode (int mode) ;
Update the preserve mode for the tree. This value determines how the tree
should try to preserve the tree expansion and selection settings as the
structure of the tree changes.
mode is the new setting and must be one of the constants defined in this
class: PRESERVE MODE NONE to not attempt to preserve the original
settings, PRESERVE MODE IDENTITY to base the preservation on the
identities of the nodes involved, or PRESERVE MODE VALUE to use the
string value of the nodes to maintain the settings.
public void setSelectionState (ArrayList selectList);
Establish the selection(s) within the tree via this method. The array passed in
contains more arrays as elements. The sub—arrays are lists of strings that
correspond to the different levels within the tree.

selectList is the array of string arrays with the new selection.

Instances of the SearchTree class can be found throughout JBuilder itself. Look
at the Project Pane and Structure Pane for starters. In JBuilder 10 there is also a
SearchList class.

Streams Class

Use the com.borland.primetime.util.Streams class to help out with
streams. Its (all static) methods are:

UNDOCUMENTED
The streams class is undocumented and so may change in future versions of
JBuilder.

public static synchronized void copy (InputStream in,
OutputStream out) throws IOException;
Copy the entire contents of an input stream into an output stream.

in is the input stream to read.
out is the output stream to write to.

public static synchronized byte[] read(InputStream in)
throws IOException;

public static synchronized byte[] read(InputStream in, long
length) throws IOException;
Load the contents of an input stream into a byte array.

in is the input stream to read from.

Chapter 9: Utility Classes 59

length is the maximum number of bytes to read. If not specified, the entire
stream is loaded.

public static char[] readChars (InputStream in, String
encoding) throws UnsupportedEncodingException,
IOException;
Load the contents of an input stream into a byte array.
in is the input stream to read.
encoding is the encoding scheme to use while reading, or null for the
default scheme.

Strings Class

Dealing with string values is the specialty of the com.borland.primetime.
util.Strings class. All of its methods are static, making them immediately
available. They involve conversions between different platforms, encoding and
decoding characters, and formatting strings as shown below:

public static boolean canConvertToInteger (String value);
Returns true if the value can be converted into an integer, or false if it cannot.

value is the text to test.

VERSION
The canConvertToInteger method is only available in JBuilder 10.

public static String capitalize(String wvalue);
Capitalize the first character of the given value, e.g. “java rocks” becomes
“Java rocks”.
value is the text to process.

VERSION
The capitalize method is only available in JBuilder 10.

public static String convertLineEndings (String input,
String lineSeparator);
Alter Unix— or Windows—style line endings to a given value.

input is the text to convert.
lineSeparator is the text to replace the line endings with.

VERSION
The convertLineEndings method is not available in JBuilder 7.

public static int convertToInteger (String value) throws
NumberFormatException;
Converts the given string into an integer value, or throws an exception if it
cannot.

value is the text to convert.

VERSION
The convertToInteger method is only available in JBuilder 10.

60

Part III: The User Experience

public static String convertToPlatformLineEndings (String
input) ;
Convert line—ending characters within a string to conform to the setting for
the current platform.
input is the text to convert.
public static String convertToUnixLineEndings (String
input) ;
Change line endings to the Unix—style “\n” setting.
input is the text to convert.

VERSION
The convertToUnixLineEndings method is not available in JBuilder 7.

public static String decapitalize(String wvalue);
Decapitalize the first character of the given value, e.g. “JAVA ROCKS”
becomes “jAVA ROCKS”.

value is the text to process.

VERSION
The decapitalize method is only available in JBuilder 10.

public static String decode (String encoded) ;
Restore a string to its original form by undoing an encode call.
encoded is the string to decode.

public static String[] decodeArray(String encoded);
Perform the opposite of the encodeArray method, transforming a delimited
list of values into an array, decoding them as they are extracted. It returns
null if the string passed in is null.

encoded is the semi—colon (;) delimited list of values to break apart and
decode.

public static String encode (String original);
Convert a string to escape any characters that could cause problems, based on
the standard encoding (see STANDARD ENCODING field below). It returns
null if passed a null string.
original is the string to encode.

public static String encodeArray(String[] original);
Encode a list of strings and concatenate them to produce a semi—colon (;)
delimited string value. The standard encoding is used, along with “\:”” for any
semi—colons in the original strings. A null is returned if the array is passed
inas null.
original is the array of strings to encode. None of these may be null.

public static String format (String template, Object][]
params) ;

public static String format (String template, Object
param0) ;

public static String format (String template, Object param0,
Object paraml);

public static String format (String template, Object param0,
Object paraml, Object param2);

Chapter 9: Utility Classes 61

public static String format (String template, Object paramO,
Object paraml, Object param2, Object param3);

These methods are wrappers for the standard MessageFormat class. They
let you substitute values into a string at locations identified by the text “{n}”
where n is a number from 0 up.

For example, calling

Strings.format ("Error in {0} at {1},{2}", fileName,
new Integer (line), new Integer (column)) ;

could produce the following
Error in Xyz.java at 10,23
template is the message to generate with embedded positional markers.
params is an array of objects to insert into the message.
param0 through param3 are individual objects to insert into the message,
substituting for “{0}” through “{3}”.

public static String[] getSubStrings (String value, int
maxWidth, FontMetrics fm);
Break text up into lines designed to fit in a given width. Breaks occur
between words as well as at normal line breaks.
value is the text to break up.
maxWidth is the maximum width in pixels of a line.
£m defines the font characteristics for the calculation.

VERSION
The getSubStrings method is only available in JBuilder 10.

public static boolean isEmpty(String wvalue);
Discover whether or not a string is null or of zero length, returning true if
so, or false if not.
value is the text to examine.

VERSION
The isEmpty method is only available in JBuilder 10.

public static String ltrim(String value);
public static String rtrim(String value);
Remove whitespace from the left— or right—hand side of a string.
value is the text to trim.
public static boolean startsWithIgnoreCase (String value,
String possiblePrefix);
Returns true if a string begins with a given prefix, ignoring case differences,
or false if it does not.
value is the text to examine.
possiblePrefix is the text to look for.

VERSION
The startsWithIgnoreCase method is only available in JBuilder 10.

The class also includes three constants:
public static final String EMPTY ARRAY[];
An empty array of strings for your use.

62 Part III: The User Experience

public static final StringEncoding STANDARD ENCODING;
A string encoding object that uses the standard encoding below.
public static final String STANDARD ENCODING DESCRIPTION;

The text value (“\\r\\n\\b\\t\\£”) that feeds into the standard encoding
object to escape the usual Java whitespace characters.

Strings.StringEncoding Class

Escaping and un—escaping characters within strings is the task appointed to the
com.borland.primetime.util.Strings.StringEncoding class. It acc-
epts a list of encodings when created and then applies these to strings it is
presented with. Each encoding consists of a string of paired characters. The first
in each pair is the character that needs to be escaped. This is done by replacing it
with the escape character followed by the second character in the pair. The
escape character itself is doubled whenever it is encountered during encoding.
For example, given an encoding string of “+p—m*t/d” and an escape
character of “\”, the string “1 + 2 * 3 — 4” would become “1 \p 2 \t 3 \m 4”.

Strings.StringEncoding encoding =

new Strings.StringEncoding ("+p-m*t/d");
System.out.println (encoding.encode ("1 + 2 * 3 — 4"));
The class’ methods are listed below:

public Strings.StringEncoding (String encoding);

public Strings.StringEncoding(String encoding, char
escapeChar) ;

public Strings.StringEncoding(String encoding, char
escapeChar, boolean useUnicodeEscape) ;
Create a new encoding for the pairs of characters provided.

encoding is the string of pairs of characters to encode.
escapeChar is the escape character to use — defaulting to “\”.
useUnicodeEscape is true (the default) to use Unicode escape sequences
for non—printing and non—ASCII characters, or false otherwise.

public String decode (String encoded);
Restore a string to its original form by undoing an encode call.
encoded is the string to decode.

public String encode (String original);
Convert a string to escape any characters that could cause problems, based on
this encoding. It returns null if passed a null string.
original is the string to encode.

The Strings.StringEncoding class is demonstrated in the UISampler class
described at the end of this chapter.

TableSorter Class

Keeping your table data sorted by column contents is simple with the
com.borland.primetime.ui.table.TableSorter class. It operates as a
wrapper around an existing TableModel passing many calls on to that model
through the abilities inherited from TableMap (also in the same package). The
data in the original table model is not reordered. Instead an ordered mapping of

Chapter 9: Utility Classes 63

the rows is held in this class, with requests directed at the model being translated
as necessary.

UNDOCUMENTED
This class remains undocumented.

The methods of this class are as follows:
public TableSorter();
public TableSorter (TableModel model) ;
Construct a new table sorter and encapsulate the data.
model is the original table model to wrap in this sorter. If not set here you
must call setModel to establish the link before using this class.
public void addMouseListenerToHeaderInTable (JTable table);
Call this method to inform this object of events in the table header so that it
can re-sort when the user clicks a column header.
table is the table displaying the data.
public void checkModel () ;
If the number of rows in the model differs from that in the mapping, the latter
is recalculated.
public int compare (int rowIndexl, int rowIndex2);
Compare two rows and return —1 if the first sorts before the second, 0 if they
are equal, or +1 if the first sorts after the second. Comparisons between the
rows are based on the columns nominated for sorting.
rowIndex1 and rowIndex?2 are the indexes of the two rows to compare.
public int compareRowsByColumn (int rowIndexl, int
rowIndex2, int columnIndex);
Compare the same column in two rows and return values as above.

rowIndex1 and rowIndex?2 are the indexes of the two rows to compare.
columnIndex is the index of the column in both rows to compare.
public int getSortedRowIndex (int rowIndex) ;

Given a row index in the original model, find its new index in the sorted
order.

rowIndex is the index of the row in the underlying model.

public int getUnsortedRowIndex (int rowlIndex) ;
Given a row index after sorting, obtain its index in the original model.
rowIndex is the index of the sorted row.

public Object getValueAt (int rowlIndex, int columnIndex);
Return the value held in the specified cell, after translating through the
sorting map.
rowIndex and columnIndex denote the position of the cell.

public int lastColumnSorted();
Retrieve the index of the column used for the last sort of the data.

public boolean lastSortAscending();
Determine whether or not the last sort was in ascending order, returning true
if it was, or false if it was not.

VERSION
The lastSortAscending method is only available in JBuilder 10.

64

Part III: The User Experience

public void n2sort();
Perform an O(N?) sort on the contents of the table.
public void reallocatelIndexes();
Ensure that the sorting map matches with the rows in the underlying model.
public boolean redoLastColumnSort () ;
Sort again by the last column selected. It returns true if there was a previous
column sort, or false if there was not.
public void setModel (TableModel model) ;
Link to the table model that contains the actual data for the table.
model is the table model to wrap and sort.
public void setSelectTopAfterSort (boolean selectTop);
Change how the table selection moves after sorting.
selectTop is true to select the new row in the position of the original
selection, or false (the default) to leave the selection as it is.
public void setValueAt (Object value, int rowIndex, int
columnIndex) ;
Update the value held in the specified cell, after translating through the
sorting map.
value is the new value for this cell.
rowIndex and columnIndex denote the position of the cell.
public void shuttlesort (int[] unsorted, int[] sorted, int
startIndex, int endIndex);
Perform a shuttle sort on the contents of an array.
unsorted is the array of integer values to be sorted.
sorted is the resulting sorted array.
startIndex and endIndex define the extent of the original array to sort.
public void sort (Object object);
Sort the model data by the previously selected column.
object is ignored.

public void sortByColumn (int index) ;
public void sortByColumn (int index, boolean ascending);
Sort the data in the model by the specified column.
index is the index of the column to sort by.
ascending is true (the default) to sort in ascending order, or false to sort in
descending order.
public void swap (int indexl, int index2);
Swap the positions of two rows.
index1 and index?2 are the two row indexes to swap.
public void tableChanged (TableModelEvent event);
When the number of rows in the underlying model change, reset the sorting
map.
event holds details about the table changes.

This class and its functionality are packaged into the com.borland.
primetime.ui.table.JSortedTable class. Just use this class wherever you
would use a normal JTable, and the sorting functionality comes built—in. You
have access to the TableSorter it uses through its getTableSorter method.

Chapter 9: Utility Classes 65

See the UISampler class described at the end of this chapter for an example
of the TableSorter.

Text Class

Manipulate text with the com.borland.primetime.util.Text class.

UNDOCUMENTED
The Text class has not yet been officially documented.

Its (all) static methods are listed below:

public static String getHeadingSpace (boolean useTabs, int
tabSize, int width);
Supply a string that represents spacing for an indentation level.
useTabs is true to use tabs where possible, or false to always use spaces.
tabSize is the number of spaces per tab stop. This value is ignored if
useTabs is false
width is the size (in characters) of the spacing required.

VERSION
The getHeadingSpace method is only available in JBuilder 9 and 10.

public static int getIndentColumn (String text, int
tabSize);
Provide the column number where non-blank text starts in a string, taking
into account any tabs. The size of the string is returned if it consists solely of
space and tab characters.
text is the string to process.
tabSize is the number of spaces per tab stop.

VERSION
The getIndentColumn method is only available in JBuilder 9 and 10.

public static String[] makeIntoArray(String text);
Break up continuous text into an array of strings delimited by linefeeds and
carriage returns.
text is the string to process.

VERSION
The makeIntoArray method is only available in JBuilder 9 and 10.

public static String removeAllWhitespaceFrom(String text);
Delete all the whitespace characters from the given text.
text is the string to process.

public static String[] removeTrailingBlankLines (Stringl[]
text);
As the name says, this method deletes any blank lines at the end of the array
of strings and returns the result.

text is the string to process.
VERSION

The removeTrailingBlankLines method is only available in JBuilder 9 and
10.

66 Part III: The User Experience

public static char[] replaceTabs (char[] text, int tabSize);

public static String replaceTabs (String text, int tabSize);
Replace any tab characters in the given text with the appropriate number of
spaces.

text is the data to process, presented as either a character array or a string.
tabSize is the number of spaces per tab stop.

TextFile Class

Make working with text files easier with the com.borland.primetime.util.
TextFile class.

UNDOCUMENTED
The TextFile class is currently undocumented.

It extends the basic java.io.File, adding the methods below:

public TextFile(File file);
public TextFile(File file, String encoding);
public TextFile(String fileName);
public TextFile(String fileName, String encoding);
public TextFile (Url url);
public TextFile (Url url, String encoding);

Create a new text file reference with one of these constructors.

file is areference to the file that contains the text.
filename is the full path and file name of the file.
url is the location of the file to open.
encoding is the character encoding for the file. It defaults to the system
property “file.encoding”.
public String getContents();
Retrieve the contents of the file as a single string.

public void setContents (String text);
Update the contents of the file through this method.

text is the new file contents. These are written straight out to the underlying
file.

TexturePanel Class

Fill a panel with repetitions of a background image by using the com.borland.
primetime.ui.TexturePanel class (see Figure 9-13).

Figure 9-13. A TexturePanel.

TexturePane|

UNDOCUMENTED
This class is currently undocumented.

It extends the basic JPanel, adding the methods below:

Chapter 9: Utility Classes 67

)

Image image) ;

LayoutManager layoutmanager) ;
Image image, LayoutManager

public TexturePanel
public TexturePanel
public TexturePanel
public TexturePanel
layoutmanager) ;
Create a new texture panel with one of these constructors.

—~ e~~~

image is the image to replicate across the panel’s surface.
layoutmanager is the layout manager to use for the panel.

public Image getTexture();
Retrieve the image copied across the panel’s background.

public void setTexture (Image image);
Establish the image repeated across the panel’s surface.

image is the picture to use.

See the UISampler class described at the end of this chapter for an example of
the TexturePanel.

VetoException Class

The com.borland.primetime.util.VetoException class defines an
exception that is thrown in several situations to stop an action in JBuilder from
progressing. It adds nothing to the basic Exception, serving merely as a
separate and identifiable exception type.

VetoExceptions are used in wizards to confirm that each page contains
valid data. Wizards also use it to determine whether they can finish their
processing or need additional information to complete. For example, Listing 9—1
shows the validation method for a wizard page.

Listing 9—1. Page validation in a wizard.

public void checkPage () throws VetoException {
// File name must be specified
if (getClassName () .length() == 0) {
classNameField.requestFocus () ;
JOptionPane.showMessageDialog (wizardHost.getDialogParent (),
"A class name must be entered",
TITLE, JOptionPane. ERROR_MESSAGE, null) ;
throw new VetoException () ;
}
}

Its constructors are:

public VetoException();
public VetoException (String message) ;
Create a new exception to veto an activity.

message is the description of the problem.

Ziplndex Class

Examining Zip files is made easier with the com.borland.primetime.util.
ZipIndex class. Once used to open a Zip file, it provides access to all the entries
within it, either as a single list, or by stepping through the directory hierarchy.
For example, the code in Listing 9-2 examines an OpenTools JAR file and lists
out its contents. In addition, when it finds the manifest file (MANIFEST.MF), it

68 Part III: The User Experience

prints out its contents. A partial listing of the resulting output is shown in Listing
9-3.

Listing 9-2. Display the contents of a Zip file.

String fileName = "c:/JBuilder/JBShared/ext/GIFEditor.jar";
ZipIndex zip = ZipIndex.getZipIndex (new File (fileName)) ;
System.out.println ("Zip file: " + fileName) ;
ZipIndexEntry[] entries = zip.getZipIndexEntries|() ;

for (int index = 0; index < entries.length; index++) {

System.out.println(" " + index + " " +
entries|[index] .getDirectory () +
(entries[index] .getDirectory () .length() > 0 ? File.separator : "") +
entries[index] .getName () + " " +

new Date (entries[index].getLastModified()));
if (entries[index] .getName () .equals ("MANIFEST.MF")) {

try {

System.out.println("Manifest:\n" +

new String(zip.read(entries[index])));

}
catch (IOException ioe) {

ice.printStackTrace () ;
}

}
Listing 9-3. Zip contents displayed.

Zip file: c:/JBuilder/JBShared/ext/GIFEditor.jar
Acme Fri Nov 30 00:00:00 GMT+10:00 1979
META-INF Fri Nov 30 00:00:00 GMT+10:00 1979
wood Fri Nov 30 00:00:00 GMT+10:00 1979
Acme\IntHashtable.class Sat Jan 31 22:40:52 GMT+10:00 2004
Acme\IntHashtableEntry.class Sat Jan 31 22:40:52 GMT+10:00 2004
Acme\IntHashtableEnumerator.class Sat Jan 31 22:40:52 GMT+10:00 2004
Acme\JPM Fri Nov 30 00:00:00 GMT+10:00 1979
Acme\JPM\Encoders Fri Nov 30 00:00:00 GMT+10:00 1979
Acme\JPM\Encoders\GifEncoder.class Sat Jan 31 22:40:52 GMT+10:00 2004
Acme\JPM\Encoders\GifEncoderHashitem.class Sat Jan 31 22:40:52
GMT+10:00 2004

10 Acme\JPM\Encoders\ImageEncoder.class Sat Jan 31 22:40:52 GMT+10:00
2004

11 META-INF\MANIFEST.MF Sat Jan 31 22:40:52 GMT+10:00 2004
Manifest:
Manifest-Version: 1.0
OpenTools-UI: wood.keith.opentools.gifeditor.GIFEditorViewerFactory

12 wood\keith Fri Nov 30 00:00:00 GMT+10:00 1979

13 wood\keith\opentools Fri Nov 30 00:00:00 GMT+10:00 1979

14 wood\keith\opentools\gifeditor Fri Nov 30 00:00:00 GMT+10:00 1979

15 wood\keith\opentools\gifeditor\ActionConstants.class Sat Jan 31
22:40:52 GMT+10:00 2004

16 wood\keith\opentools\gifeditor\Color.gif Sat Jan 31 22:40:52
GMT+10:00 2004

17 wood\keith\opentools\gifeditor\ColorAction$l.class Sat Jan 31
22:40:52 GMT+10:00 2004

W J oy Ul WP O

)

UNDOCUMENTED
The ZipIndex class is not documented by Borland.

The methods of this class are described below. Note that all filenames are case—
sensitive.
public synchronized void close();

Close the associated Zip file.

Chapter 9: Utility Classes 69

public boolean contains (String entryName) ;
Return true if the Zip file contains this entry, or false if it does not. If the file
is hidden (see the hide method) then it returns false.
entryName is the full name of the entry to look for.

public synchronized ZipIndexEntry[] getAllChildren (String
rootName) ;
Extract all the children beneath a particular entry in the Zip file.
rootName is the starting point to find children from. Use an empty string for
all children at any level. Do not pass in null.

public ZipIndexEntry[] getChildren(String entryName) ;
Retrieve a list of the children of a particular entry in the Zip file. If it has no
children, an empty array is returned. If the file is hidden (see the hide
method) then it also returns an empty array.
entryName is the full name of the entry to examine.

public static synchronized ZipIndex getExistingZipIndex (
File file);
Locate and return a reference to the entry for a particular file, or null if it
cannot be found.

file is the file to find.

VERSION
The getExistingZipIndex method is not available in JBuilder 7.

public String[] getFilenames (String entryName) ;
Get an array of path entries for a given entry in the Zip file. An empty array
is returned if the entry is not found. If the file is hidden (see the hide
method) then it returns an empty array.

entryName is the name of the entry to look at.

public long getlastModified(String entryName) throws
IOException;

public long getLastModified(ZipIndexEntry entry);
Retrieve the timestamp of the specified Zip file entry.
entryName is the full name of the entry to get the timestamp for.
entry is the Zip entry to get the timestamp for.

public static synchronized ZipIndex[] getOpenZipIndexes () ;
Obtain a list of all the Zip files that are currently open.

public long getRawlLastModified (String entryName) throws
IOException;

public long getRawlLastModified(ZipIndexEntry entry);
Retrieve the raw timestamp of the specified Zip file entry. This value has the
date and time encoded in sets of bits within it: bits 0 to 5 are the number of
seconds divided by two, bits 6 to 11 are the minutes, bits 12 to 16 are the
hours, bits 17 to 21 are the day, bits 22 to 25 are the month, and bits 26 to 31
are the year after subtracting 1980.
entryName is the full name of the entry to get the timestamp for.
entry is the Zip entry to get the timestamp for.

public static synchronized ZipIndex getZipIndex (File file);

public static synchronized ZipIndex getZipIndex (Url url);
Create a new ZipIndex object for the given Zip file.

70

Part III: The User Experience

file or url is the reference to the Zipped file to be processed.

VERSION
The getzipIndex method that takes a Url argument is only available in
JBuilder 10.

public ZipIndexEntry[] getZipIndexEntries();
Return a list of all the entries in the Zip file. If the file is hidden (see the
hide method) then it returns an empty array.

public ZipIndexEntry getZipIndexEntry(String entryName) ;
Locate a given entry and return a reference to it, or null if it cannot be
found. If the file is hidden (see the hide method) then it also returns null.
entryName is the name of the entry to find.

public synchronized void hide();
Make the file temporarily unavailable. Use the show method to return it to
full function.

public static synchronized void hideAll();
Call hide for all the entries returned by getOpenZzipIndexes.

VERSION
The hideAll method is not available in JBuilder 7.

public boolean isDirectory(String entryName) ;
Return true if the given path is a directory, or false otherwise. If the file is
hidden (see the hide method) then it returns false.
entryName is the name of the entry to check. Do not include any trailing file
path separator character.
public boolean isHidden() ;
Determine whether or not the file is currently hidden (see the hide method).
public boolean isOpen() ;
Determine whether the Zip file has been opened. Return true if it has, or false
if it has not.
public int length(String entryName) throws IOException;
Find the length (in bytes) of a given entry. It throws a FileNotFound-
Exception if the given entry is unknown. You must call open before
using this method, or you will get NullPointerExceptions instead.
entryName is the name of the entry to find.

VERSION
The length method is only available in JBuilder 10.

public synchronized void open();
Open the associated Zip file and load its index.
public byte[] read(String entryName) throws IOException;

public synchronized byte[] read(ZipIndexEntry entry) throws
IOException;

Load the contents of the specified entry in the Zip file into a byte array, and
return it.

entryName is the full name of the entry to read from the Zip file.
entry is the Zip entry to read.

Chapter 9: Utility Classes 71

public int read(String entryName, byte[] bytes) throws
IOException;

public synchronized int read(ZipIndexEntry entry, bytel]
bytes) throws IOException;
Load the contents of the specified entry in the Zip file into the byte array, and
return the number of bytes read.
entryName is the full name of the entry to read from the Zip file.
entry is the Zip entry to read.
bytes is the byte array to fill with the entry’s contents.

public synchronized void show () ;
Make the file available for full use again following a call to the hide
method.

public static synchronized void showAll () ;
Call show for all the entries returned by getOpenzipIndexes.

VERSION
The showAll method is not available in JBuilder 7.

One of the tabs in the UISampler class described later illustrates how the
ZipIndex and ZipIndexEntry classes can be used to peruse a Zip file.

ZipIndexEntry Class

Individual entries within a Zip file are encapsulated by instances of the
com.borland.primetime.util.ZipIndexEntry class. You retrieve these
entry objects from the ZipIndex object that is tied to their Zip file. Their
abilities are shown below:

UNDOCUMENTED
This class has not been documented yet.

public ZipIndexEntry(String fullPathName) ;
public ZipIndexEntry(String pathName, String fileName) ;
Create a new Zip file entry.
fullPathName is the full path and file name within the Zip file for this
entry.
pathname is the path name within the Zip file.
filename is the file name for this entry.
public String getDirectory();
Return the name of the directory that contains this entry.
public long getLastModified();
Retrieve the timestamp for this entry indicating when it was last altered.
public String getName () ;
Obtain the name of this entry. This is just the file name without any path
information.
public int getRawlLastModified();
Retrieve the raw timestamp of this entry. The value has the date and time
encoded in sets of bits within it: bits O to 5 are the number of seconds divided
by two, bits 6 to 11 are the minutes, bits 12 to 16 are the hours, bits 17 to 21

72 Part III: The User Experience

are the day, bits 22 to 25 are the month, and bits 26 to 31 are the year after
subtracting 1980.

public boolean isDirectory();
Return true if this entry is a directory, or false otherwise.

UlSampler Example

The UISampler class included as an example on the accompanying Web site
demonstrates several of these classes in action. It is installed as an OpenTool and
is accessed via the Ul Sampler entry on the Tools menu.

The sampler’s first tab, Info, (see Figure 9—14) shows off the Platform and
JBuilderInfo classes. Details from these are displayed on the form.

Figure 9—14. Demonstrating Platform and JBuilderinfo.

< JBuilder Ul Sampler
Info | ColourImage rKeystere |/List |/Mi5|: |/Ta|:!|e .r-ZipICheckTree |

OSMName ‘Windows 2000 |
[#] Windows Uniz [

[] Solaris Limuz [
User Keith wood

Company ENIF-.

Build Number |10.0.176.0

|
|
Descripkion i._IEIuiIder}(Foundatiaon |
|
|

SKU iFuundatiun
[#] Licensed Trial [_]
[_] Professional Enterprise [_|

java, awk, Color[r=0,0=255,b=0]

The second tab (see Figure 9-15) shows off the AuraImage, TexturePanel,
ColorPanel, ColorCombo, and CompositeIcon classes. Behind the scenes,
the Tcons and Images classes are also used. Selecting a new color updates the
aura image. The color details are also displayed in the MessagelLabel at the
bottom of the form.

Chapter 9: Utility Classes 73

Figure 9-15. Demonstrating Auralmage, TexturePanel, ColorPanel,
ColorCombo, and Compositelcon.

2 JBuilder Ul Sampler

rII'IFD Calour/Image | Kewstroke | List | Misc rTable rZipICheckTree |

Auralmage [Disabled 5

TexturePanel

ColorPanel

java, awk, Color[r=0,0=255,b=0]

The next tab (see Figure 9—16) illustrates the KeyStrokeDialog, KeyStroke-
EditorTextField, and KeyStrokeEditorPanel classes. Selecting a key-
stroke in the popup dialog displays its description in the message label at the

bottom of the form, while selecting a keystroke on this page displays its Java
initialization string.

Figure 9-16. Demonstrating KeyStrokeDialog, KeyStrokeEditorTextField, and
KeyStrokeEditorPanel.

= =13l x|
rInFn rCnInurIImage rKeystere List | Misc rTabIe rZipICheckTree |

KeyStrokeDialog < Select Keystroke

~KevstrokeEditarPanel

Select event bype;

Selact event bype:

W) Key Pressed () Key Released () Key Typed
@) Key Pressed () Key Released () Key Typed

Tvpe any keystroke combination:

Twpe any keystroke combination:

|aut+F
|Cirl+Shift+F |
Properties
~Propetties
[chrl] Al [_] shift
[] Ctrl [] Al [1] Shift

] Meta [] alt Graph
[] Meta [] &l Graph

Kew code: |'\-'K_F - |

Ky code: |'v'K_F - |

Keystroke. getkeystroke(Wk_F, KeyEvent.CTRL MASK | |ox I[Bl][ek J
KeyEvent, SHIFT_MASE, False)

74 Part III: The User Experience

The List tab (see Figure 9-17) illustrates the ListPanel class through a custom-
ized descendent (L.istPanelSample). Entries are simple text values.

Figure 9-17. Demonstrating ListPanel.
& =13l
rinfn rCDMUNImége rKeysuoke List | mlisc rTamp rzmichecknee

ListPanel [qpe [M.
Two
Faour
Six
Six and a half
SEVEN

ListPanel Demo Add %]

Mew element
Eight

| Mowve Up

) Maove Dowin
1

[

Figure 9-18, the Misc tab, demonstrates several miscellaneous classes, including
EdgeBorder and LowBorder, ClipPathRenderer, Strings.StringEn-
coding, DefaultDialog, and ButtonStrip. Resize the form horizontally to
see the effects of the clip renderer in the combobox. The DefaultDialog buttons
popup appropriate dialog boxes. For the Validate button, you are required to
validate the contents of the dialog before it can be closed. The OK button on the
button strip calls up class browser from the PackageBrowserTree class, with
your selection being displayed in the message label.
Figure 9-18. Demonstrating other miscellaneous classes.
o == EZl] £ Select a class
Info | ColourfImage | Keystroke | List | Misc | Table | Zip/CheckTree |

Browse | Search |

] Search for: i
[¥] [v] EdgeBorder LowBorder 2RI |arra\,f||| |
[v] Matching list:

com . borland. primetime. util, ArrayListMap
java.util. ArrayList
StringEncading jara, kil ArvaysharrayList

ClipPathRenderer | c:fJBuilderf. .. jSampler . java - |

Encading |+p-m*tfd |

Value [1+2+3-4 |
§11p21131m4 |
DefaultDialag [smple | [modal | [yadete |
Buttanstrip [ok |[concel || rep |

[Ok][Cancel][Help l

Chapter 9: Utility Classes 75

The Table tab (see Figure 9-19) shows the use of the TableSorter class to
back up a JTable.

Figure 9-19. Demonstrating TableSorter.
< JBuilder Ul Sampler

rjInFcr_ rEDInur,l'I!'nai;e_ rKé.":.-fSt“rl:lFﬂ? _'List 'Misu:“__rTabIe r-iipjché_c[cTree |
TableSorter

Mumber MHame ©
cing -
deux
eight
five
four
huit
neuf
nine
ane B
fquatre .
sept
seven
Six
Six B

OO0 | = =) | = 0D 0D | 00 | O 0D RO O

[] Select top after sark

Cancelled

And finally, Figure 9-20 demonstrates the ZipIndex and ZipIndexEntry
class. When you browse for and select a Zipped file, its directory entries are read
and loaded into a CheckTree. If a manifest file is found in the Zip file, its
contents are copied into the text area at the bottom of the form.

Figure 9-20. Demonstrating ZipIndex, ZipIndexEntry, and CheckTree.

< JBuilder Ul Sampler
rjInFcr_ rEuInur,l'Imai;g. rKéy:stfu:quE:! _'List 'Misc_r-ﬁatg!e 'rZip,l'CheckTree |

1 JBuilder JBshared) extl GIFEitor . jar

[&crne (Fri Mo 30 00:00:00 GMT+10:00 1979)
= META-IMF (Fri Mow 30 00;00;00 GMT+10:00 1979}
MAMIFEST.MF {3ak Jan 31 22:40:52 GMT+10:00 2004)
=[] wood (Fri Mo 30 00:00:00 GMT+10:00 1979
=[] keith (Fri Mow 30 00:00:00 GMT+10:00 1979)
El [] opentaols (Fri Mow 30 00:00:00 GMT-+10:00 1979%
=[] gifeditar (Fri Mow 30 00:00:00 GMT+10:00 1979)
Lﬁ.ctiunCDnstants.class (Sak Jan 31 22:40:52 GMT+10:
[] Color.gif {5at Jan 31 22:40:52 GMT+10:00 2004}

Y

[4]

[E
Manifest.mf conkents

Manifest-Yersion: 1.0
OpenTaoals-Ul wood keith.opentools. gifeditor GIFEditarviewerFactory

| ¥

B

Cancelled

76 Part III: The User Experience

Summary

The classes presented in this chapter cover a wide range of functionality.
Included are utility classes that provide information about the JBuilder
environment, and let you work with classpaths, icons, images, streams, strings,
and Zip files. User interface components include images and icons, keystroke
controls, list cell renderers, an enhanced tree, and a textured panel.

The UISampler class that accompanies this chapter demonstrates many of
these classes, showing how they can be used.

ditors and

The Content Pane is the main focus of the JBuilder IDE. It is here that you see
the contents of the files that make up your projects. Each file may have a number
of different views of it, corresponding to the tabs along the bottom of the pane.
Viewers may pertain to just one node type, or be applicable across many assorted
types.

Normal text—based files have a viewer associated with them that allows you
to update their contents. This is the editor, which can provide syntax highlighting
for various styles of code, and responds to numerous keystrokes to invoke actions
on its contents.

Chapter 15 looks at the editor itself and focuses on its configuration settings,
and how it highlights certain lines for you, either through syntax highlighting or
via custom styles and marks. Chapter 16 examines the role of editor kits and
scanners, tools that extract the syntax of a text-based file for highlighting.
Linking keystrokes to actions is the subject of Chapter 17, and the management
of the keymaps that provide this mapping.

Providing alternate views of a node is discussed in Chapter 18, allowing you
to extend your interactions with a particular node type. Related to this, Chapter
19 describes the Structure Pane and how you can use this to further enhance your
node viewer.

The Component Modeling Tool (CMT) is covered in Chapter 20. This tool
lets you interact with the components encoded in a Java class, retrieving or
setting their properties, and examining their relationships. CMT abilities are put
to use in Chapter 21 which looks at designers that extend the Structure Pane for
the Design tab, while in Chapter 22 you use them to apply graphical changes to a
layout back into the code.

77

78 Part V: The Editors and Viewers

Working with the designers in JBuilder requires interacting with the UI
components that make up a class. The Component Modeling Tool (CMT) is a
collection of interfaces that allows you to delve into the components defined
within a class. You can read property settings from them, and alter these values
in response to user activities.

CMT in turn relies on the Java Object Toolkit (JOT) to parse the Java code
and extract subcomponents from it (see Chapter 24). JOT also allows CMT to
discover what properties and events those components expose, following the
standard JavaBeans patterns. In fact, if the component has an associated
BeanInfo class, that is also scanned for further definitions. Settings for the
properties and event handlers made in the Ul initialization method (usually
jbInit) for the parent component are retrieved and stored against each
subcomponent.

To fully expose the attributes of a class, its ancestral chain must be traversed.
At each stage a CmtComponent object is created to model the superclass.
Performing all this searching and instantiation is an expensive operation during
the design process, so JBuilder caches information about each class after it has
first been loaded. JBuilder retains the summarized results between sessions by
storing them in special files in the user’s home directory. Within the appropriate
folder for your version of JBuilder (such as .jbuilder9) appears the pme
(properties, methods, or events) directory that contains files with .pme
extensions. Each one is named for the class that it describes, like
javax.swing.JButton.pme. Then JBuilder can just read this file rather than
walking through the class hierarchy.

NOTE

The .pme files are simple text files, similar to Windows initialization files. They
contain three sections with headers marked by square brackets ([]), which then
contain sets of values, one per line. The BeanDescriptor section contains
overall information about the component, including its class name and any icons
used to represent it. Next comes the PropertyDescriptors section that lists
the component’s properties, with their display names, tooltip, type, and access
method names. And finally there is the EventSetDescriptors section, which
holds the set of listener interfaces implemented on the component, again with
their generic name, the interface name, and their add and remove methods.

79

80

Part V: The Editors and Viewers

Within a CmtComponent object, the attributes of that class are represented by
CmtEvent, CmtMethod, and CmtProperty objects. If you have access to the
source for the component, then each of these also implements a source form —
CmtComponentSource, CmtEventSource, CmtMethodSource, or
CmtPropertySource — to allow you to update its details. Together these
objects define the available attributes for any component of this type.

When a component of a certain type is created within a class, it is embodied
in a CmtSubcomponent instance. You can then interact with its attribute values
through the CmtEventState, CmtMethodCall, and CmtPropertyState
interfaces. Again, if you are able to update the code containing these attributes,
you do so through another interface: CmtPropertySetting.

NOTE

The CMT interfaces and classes belong to the com.borland.jbuilder
branch of the package structure since they are directly related to Java code. This
follows the split between the PrimeTime packages (the generic IDE framework)
and JBuilder (the Java—specific IDE).

The Inspector in the designer uses all this information to provide the lists of
properties and events for each component, updating its display whenever a
different component is selected. Property editors allow each property or event to
be presented and updated in an appropriate manner. Default editors apply to the
basic property types. You can also provide custom editors for specific properties
— linking the two through a BeanInfo class.

Within the designer (Design tab for Java source files), nodes
(CmtModelNode) in a subtree (CmtModel) in the Structure Pane represent the
subcomponents in a class. These provide access to the underlying subcomponent
and its attributes.

Figure 20—1 shows how the interfaces in this package relate to each other.
Solid lines and arrows between interfaces indicate inheritance. Dashed lines and
open arrows denote navigational routes, for example, from a CmtSubcomponent
object you can get to a CmtPropertyState and thence to the CmtProperty
object. Interfaces in shaded boxes are discussed in detail in this chapter. The
TreeNode interface comes from the standard javax.swing. tree package.

Figure 20—1. The CMT interfaces.

CmtComponent //” _= CmtProperty
| Pid _- - Vi
| -7 - 4
I 7 T ,
\V Yol ye
CmtModel [---------- > CmtComponent [~-____ < CmtPropertySource
7 N 7 N N .
// \\\ // \\ ~\\\ ,//“\ \\\\\\\\
// SO R // \\ : <7 ~ A
/7 ~ ’/ \\ - - ~~o \\ \\\\\\\
/ / N <\ S~ ==
TreeNode ¢ CmtComponentSource \\ CmtPropertyState
\ \>\ e /:'\ \ \\\ et -7 \
\ 77\ | \ \ _-
\ ,/ \ | \\ _- ,\\
\ 7 \] PaaV \
\ L2 \ \,/ -~ \ \
\ \
CmtModelNode ----- > CmtSubcomponent [------ “---*> CmtEventState
\ \
: /:'\ \\\ \\\ \\
\ 1 AN \ AN
| [} N\ \ \
: \:/ \\\ \\ 3
1 N\ \
CmtHasSubcomponents \ | CmtMethodCall -------- \-‘x----l\-\--> CmtMethod
\\ : SN \\ \\
\ | S~o AN \\
\] S \ \
\\ ' N ~ AN \\
L Ny
CmtValue Y CmtMethodSource

» CmtFeature

CmtEventSet

<______

CmtEvent

CmtEventSource

CmtPropertyAccessor

CmtPropertySetting

82 Part V: The Editors and Viewers

CmtComponents Interface

The com.borland.jbuilder.cmt.CmtComponents interface gives you
access to the components that make up a file in a project. You receive a reference
to this interface when working with the Designer interface through its
annotate method (see Chapter 21), or directly from the Designerviewer
class (the one behind the Design tab) as follows:

DesignerViewer viewer = (DesignerViewer)browser.getViewerOfType (
browser.getActiveNode (), DesignerViewer.class);
if (viewer != null) {
CmtComponents comps = viewer.getComponents () ;

}

Its methods are shown below:

public CmtComponent getComponent (JotClass clazz);

public CmtComponent getComponent (JotClass clazz, boolean
logErrors) ;

public CmtComponent getComponent (JotFile file);

public CmtComponent getComponent (JotFile file, boolean
logErrors) ;

public CmtComponent getComponent (Url url);
Gain access to the main component within a file or class through these

methods. They return null if no appropriate component is found.
clazz is the JotClass representing the component.
file is the JotFile that contains the component.
url is the location of the file to open.
logErrors is true (the default) to report any errors to a tab in the Message
Pane (labeled Designer), or false to suppress them.
public JotPackages getPackages();

Retrieve the JOT package manager for this set of components. See Chapter
24 for more details.

public JBProject getProject();
Obtain a reference to the project for this set of components.
public void release (CmtComponent component);
Free up any resources held by a component and its associated information.
component is the component that is no longer needed.
public void shutdown () ;
Finish with this component manager.

The com.borland.jbuilder.cmt.CmtComponentManager class
implements CmtComponents.

UNDOCUMENTED
The CmtComponentManager class has not yet been documented.

This class adds the following methods:

Chapter 20: Component Modeling Tool 83

public CmtComponent createComponent (CmtComponents
cmtComponents, JotClass jotClass);

public CmtComponent createComponent (CmtComponents
cmtComponents, String pmeDir, int pmeReadFlag, int
pmeWriteFlag, JotFile jotFile, boolean logErrors);
Generate a reference to a new component and return it for further use.

cmtComponents is the manager for the new component.

jotClass is the JOT reference to the class of the component to create.
pmeDir is the full path to the location of the . pme files.

pmeReadFlag is the option set for when to read .pme files.

pmeWriteFlag is the option set for when to write .pme files.

jotFile is the JOT reference to the containing file for the new component.
logErrors is true (the default) to report any errors to a tab in the Message
Pane (labeled Designer), or false to suppress them.

VERSION
The createComponent methods are only available in JBuilder 9 and 10.

public static PropertyEditor findEditor (Class clazz);
Find a property editor for a particular type of property. A generic editor is
returned if no specific one is available.
clazz is the class of the property type for which to locate an editor.

public static void registerComponentFactory (
CmtComponentFactory factory);
Register a factory to use to create new component references.

factory is the component generator.

VERSION
The registerComponentFactory method is only available in JBuilder 9 and
10.

CmtComponent Interface

Information about each component within a Java file is held in an object that
implements the com.borland.jbuilder.cmt.CmtComponent interface. It
gives you access to the properties and events of that component.
Its methods are listed below:
public String getContainerDelegate();
For Swing containers that have an intermediary between the container class
and the object that handles the component’s layout and sub—components, you
use this method to retrieve that reference. For example, JFrame lets its
content pane do the Ul work, so this method returns “getContentPane ()”
for it.

public Class getCustomizerClass();
If the BeanInfo class for this component defined a customizer class, then
return it. Otherwise, return null. The returned class provides its own user
interface to allow you to update the component’s properties in one go.

84

Part V: The Editors and Viewers

public int getDefaultEventIndex () ;
public int getDefaultPropertyIndex();

Find the index into the getEvents or getProperties arrays for the
default event or property for this component, or —1 if there is no default.

public CmtEvent getEvent (String name) ;

public CmtEvent[] getEvents();
Return one or all the events for this component.
name is the name of the event to locate, such as “keyPressed”. If no
matching event is found, a null is returned.

public RuntimeException getException();
Receive back an exception object if this component is in an invalid state, or
null if everything is valid.

public JotFile getFile();
Access the JOT file that contains this component.

public Icon getIcon();
Ifa BeanInfo class is associated with this component, and it defines a small
icon to represent it, then return that icon here. Otherwise, return null.

public Class getLiveClazz();
Retrieve a reference to the actual class for this component.

public JotClass getLiveType () ;
Obtain a reference to the current class information for this component. If a
proxy class is being used in the designer because the real class is abstract,
that proxy is returned here.

public CmtComponents getManager () ;
Locate the CMT manager for this component through this method.

public CmtMethod getMethod(String name) ;

public CmtMethod getMethod (String name, JotClass[] types);
Find the first method with a particular name and return a reference to it, or
null if none match.
name is the name of the method to locate.
types is an array of the types of arguments that the method accepts. Any set
of parameters matches if not specified.

public CmtMethod[] getMethods();
Retrieve a list of all of the exposed methods for this component.

public CmtProperty[] getProperties();

public CmtProperty getProperty(String name);
Get all or just one of the properties of this component.
name is the name of the single property to retrieve, such as “background”.
If such a property is not found, a null is returned.

public CmtFeature getPropertyFromSetter (String methodName) ;
Find a property or event’s details given the name of its associated method. A
CmtProperty or CmtEventSet object is returned, or null if the name
cannot be matched.
methodName is the name of the setter or adder method for the property
required, such as “setBackground” or “addMouselListener”.

public JotClass getType();
Retrieve JOT information about the class for this component. This appears to
always be identical to getLiveType.

Chapter 20: Component Modeling Tool 85

public boolean isBean();
Determine whether this component is a JavaBean, returning true if it is, or
false if it is not.

public boolean isContainer();
Returns true if this component is a container (it descends from
java.awt.Container), or false if it is not. This determines whether or not
it may have sub—components.

public boolean isHiddenState();
Discover whether this component has been marked as “hidden-state” in
the associated BeanInfo class.

public boolean isReadOnly () ;
If this component resides in a readonly file, this method returns true.
Otherwise, it returns false.

public void release();
When the component is about to fall out of scope, this method is invoked to
allow it to release any resources it may be using.

CmtComponentSource Interface

Building on the abilities of CmtComponent above, the com.borland.
jbuilder.cmt.CmtComponentSource interface adds methods to update the
information about the component within a file. It is only implemented when the
source for the file is available and can be altered. Within the Designer interface
(see Chapter 21) several methods receive references to this type of object, or you
can access it directly from the DesignerViewer class (the one behind the
Design tab) as follows:

DesignerViewer viewer = (DesignerViewer)browser.getViewerOfType (
browser.getActiveNode (), DesignerViewer.class);
if (viewer != null) {

CmtComponentSource compSource = viewer.getComponentSource();
}
Once you have a CmtComponentSource, you can then interact with its
subcomponents and the designer models that represent them. You can also
register for events that occur within this component.
The new methods are listed below:
public void addComponentSourcelListener (
CmtComponentListener listener);
Include an object in the list of those informed about events within this
component.
listener is the object to notify of the events.
public CmtMethodSource addMethod (String returnType, String
name) ;
Add an empty method to this component and return a reference to it.

returnType is the full name of the return type for the method.
name is the name of the new method.

public void addModel (CmtModel model, CmtModel aheadOf) ;
Include a new model in the component tree. Usually designers would call this
from their annotate methods (see Chapter 21).

model is the new model to add.

86 Part V: The Editors and Viewers

aheadof indicates where the new model should be placed. Use null here to
add it at the end.

public CmtPropertySource addProperty(String type, String
name) ;
Add a property to this class and return a reference to it.

type is the full name of the property’s type.
name is the field name for the new property.

public CmtSubcomponent addSubcomponent (String type, String
name, int scope);
Include a new variable in this component and return a reference to it.
type is the full name of the variable’s type.
name is the field name for the new variable.
scope is one of CLASS SCOPE or METHOD SCOPE from the CmtSubcomp-
onent interface. The former places the entry in the class as a whole, while
the latter places the entry within the Ul initialization method.

public boolean checkReread();
Returns true if the buffer is out of date, or false if it has not changed.

public void commit (boolean hard);
Write any changes to the component back into the shared file buffer.
hard is true to write this out to disk as well, or false to just update the buffer.
Its value is actually ignored.

public void fireComponentChanged() ;

public void fireSubcomponentChanged (CmtSubcomponent
subcomponent) ;
Notify registered listeners that something has changed within this
component.
subcomponent is the subcomponent that changed, if applicable.

public CmtMethodSource getInitMethod (String modelType) ;
Retrieve a reference to the source for the Ul initialization method.
modelType is the component model type.

public CmtModelNode getLastDesignedNode () ;
Obtain a reference to the node last selected for designing.

public CmtModel getModel (String name, CmtSubcomponent
subcomponent) ;
Find a model and return a reference to it, or null if it cannot be found.

name is the name of the model to locate.
subcomponent is the subcomponent to look for within that model.

public CmtModel[] getModels();

public CmtModel[] getModels (CmtSubcomponent subcomponent) ;

public CmtModel[] getModels (String name) ;
Obtain a list of all the models for this component. This list may be filtered by
the supplied parameters, with an empty array resulting when no matches are
found. If release has been called on this component, then this method
returns null.

subcomponent is the subcomponent to find within the returned models.
name is the name of the model(s) to locate.

Chapter 20: Component Modeling Tool 87

public DefaultTreeModel getModelTree();

Get the model tree for this component.
public String getName () ;

Returns the name of this component.
public JotSourceFile getSourceFile();

Retrieve a reference to the source file that contains this component.
public CmtSubcomponent getSubcomponent (String name) ;
public CmtSubcomponent[] getSubcomponents () ;

Find one or all of the subcomponents for this component. These methods

return null or an empty array if no subcomponents are found.

name is the name of a particular subcomponent to locate.
public void removeComponentSourcelListener (

CmtComponentListener listener);

Remove an object being notified of events in this component.

listener is the object to delete.

public void removeMethod (CmtMethod method) ;

public void removeModel (CmtModel model) ;

public void removeProperty (CmtProperty property);

public void removeSubcomponent (CmtSubcomponent
subcomponent) ;
Delete an attribute from this component (or component tree for a model).
method, model, property, or subcomponent identify the attribute to
remove.

public void renameSubcomponent (CmtSubcomponent
subcomponent, String newName) throws
IllegalArgumentException;
Replace all references within the file to a subcomponent with a new name.
An exception is thrown if the file is readonly, or if the new name is empty,
contains illegal characters, or is already in use.
subcomponent identifies the subcomponent to locate.
newName is the new name for this subcomponent.

public void setLastDesignedNode (CmtModelNode node) ;
Keep track of the last node selected so that it can be the default when the
designer is re-opened.

node is the node selected.

These fields also appear in this interface:
public static final String INIT METHOD NAME;
The name of the method JBuilder uses for Ul initialization (“jbInit”) is
found here.
public static final JotClass INIT METHOD PARAMSI[];
This field contains the list of parameter types for the method above.
public static final String JBOWNER METHOD NAME;
This field contains the name of the method to call to set the owner module.
public static final String VA INIT METHOD NAME;
The name of the Visual Age Ul initialization method is found here, being

“initialize”.

88 Part V: The Editors and Viewers

CmtComponentListener Interface

Events occurring within a component are reported to interested parties that
implement the com.borland.jbuilder.cmt.CmtComponentListener
interface. Create an instance for this interface and register it with the
CmtComponentSource:

cmtComponentSource.addComponentSourceListener (
new MyCmtComponentListener());

Its methods appear below:

public void componentChanged (CmtComponentEvent event);
This method is called when the component’s contents change.
event holds the details about the change.

public void eventChanged (CmtComponentEvent event);

public void methodChanged (CmtComponentEvent event);

public void propertyChanged (CmtComponentEvent event);
When an event, method, or property of the component changes these events
fire.
event holds the details about the change.

public void subcomponentChanged (CmtComponentEvent event) ;
Changes to a subcomponent within a component trigger this method.

event holds the details about the change.

CmtSubcomponent Interface

Representing an instance of a CmtComponent within a class is the
com.borland.jbuilder.cmt.CmtSubcomponent interface. It associates a
variable declaration with the component type and lets you get at the attributes of
that instance. Note that the implicit reference to the current class, this, is also
included as a subcomponent.

You can access the subcomponents for a file through the CmtComp-
onentSource interface, or directly from the Designerviewer class (the one
behind the Design tab) as follows:

DesignerViewer viewer = (DesignerViewer)browser.getViewerOfType (
browser.getActiveNode (), DesignerViewer.class);
if (viewer != null) {

CmtSubcomponent [] subcomps = viewer.getSubcomponents () ;

}
Through the CmtSubcomponents returned above you can interact with the code
that underlies them, reviewing or altering their types, initialization, and
properties.
Its methods are shown here:
public void addPropertyChangelistener (
PropertyChangelListener listener);
Include an object interested in changes to property values within this
subcomponent.
listener is the object to notify.

Chapter 20: Component Modeling Tool 89

public void addPropertyState (CmtPropertyState
propertyState) ;
Add a property state for this subcomponent.
propertyState is the new setting to include.

public CmtSubcomponent copy (CmtComponentSource toFile,
HashMap subcomponentList, boolean toClipboard);
Copy this subcomponent into another file and return a reference to it.
toFile is the source file to copy the subcomponent to.
subcomponentList is the list of subcomponents to copy.
toClipboard is true to use the clipboard during the copy, or false to not use
it.

public void firePropertyChange (String propertyName, Object
oldvalue, Object newValue);
Notify registered listeners that a property has changed its value.
propertyName is the name of the property that is changing.
oldvalue and newValue are the before and after values for the property.

public Container getAsContainer();
Retrieve this subcomponent as a live container object. Normally this is the
same as getLivelInstance, except when containership is delegated to
another object, in which case that object is returned.

public JotAssignment getAssignment () ;
Find the JOT assignment expression for this subcomponent.

public CmtComponent getComponent () ;
Returns the CMT component for this subcomponent.

public JotClass getComponentType () ;
Obtain a reference to the JOT class type for this subcomponent.

public Dialog getCustomizerDialog() ;
Locate the customizer dialog for this subcomponent or null if there is none.
If this customizer updates any settings it should call setNeedsSerialize
to indicate that these should be saved.

public JotClass getDeclaredClass () ;
Retrieve a reference to the JOT class for this subcomponent. This is the same
as getComponent.getType unless it is an array, in which case you get a
reference to the array type. For the self-referencing subcomponent this, it is
the ancestor class.

public CmtEventState getDefaultEventState();

public CmtPropertyState getDefaultPropertyState();
Get the state of the default event or property for this subcomponent.

public CmtEventState getEventState (String name) ;

public CmtEventState[] getEventStates();
Find one or all of the events for this subcomponent. A null or an empty
array results if the requested events are not found.
name is the name of an event to locate.

public JotExpression getInitializer();
Returns the JOT initialization expression for this subcomponent, usually
something like “new JButton ()”

90

Part V: The Editors and Viewers

public CmtMethodSource getInitMethod() ;
Locate the method from this subcomponent’s owner where the
subcomponent is initialized.

WARNING
This should always be the standard Ul initialization method (jbInit), but if the
subcomponent has properties set elsewhere, that method may be found instead.

public JotClass getLiveClass();
Obtain a reference to the actual JOT class for this subcomponent.

public Object getLiveInstance();

public Object getLivelInstance (boolean create);
Get a reference to the actual object represented by this subcomponent, or
null if it does not yet exist.

create is true (the default) to construct an appropriate object if it does not
already exist, or false to not create a new one.

public CmtMethodCall[] getMethodCalls();
Retrieve all the method calls, including property settings, from the UI
initialization method that have this subcomponent as the owner. For example,
this list may include:

deleteButton.setText ("Delete");
deleteButton.setMnemonic ('D") ;

public String getName () ;
Returns the name of the variable for this subcomponent, such as “delete-
Button”.

public CmtComponentSource getOuterComponent () ;
Find the owner component for this subcomponent. This is usually the main
component in the file, even for this.

public CmtPropertyState getPropertyState (String name) ;

public CmtPropertyState[] getPropertyStates();
Obtain the states of one or all of the properties of this subcomponent. This
list may include those with default values. A null or an empty array is
returned if the desired properties are not found.
name is the name of a property to find.

public int getScope();
Discover the scope of the variable for this subcomponent — one of the
constants defined in this interface.

public String getSourceName () ;
The “name” of this variable if it is a method call instead of just a variable,
such as “dml.getDataSet () .getQuery ()”. For the main class within a
file this has the value “this”.

public boolean isNeedsSerialize();
Returns true if this subcomponent should be serialized with its new settings,
or false if no significant changes have been made.

public void release();
Notification that the subcomponent is about to fall out of scope. Release any
resources that were held from here.

Chapter 20: Component Modeling Tool 91

public void releaselLivelnstance();
Free up the actual object represented by this subcomponent.
public void removePropertyChangelListener (
PropertyChangelListener listener);
Delete a listener for changes to property settings.
listener is the previously registered object being notified.
public void removePropertyState (CmtPropertyState
propertyState) ;
Remove a property setting from this subcomponent.
propertyState is the setting to delete.

public void serialize() throws NotSerializableException,
IOException;

public void serialize (OutputStream outStream) throws
NotSerializableException, IOException;
Serialize the subcomponent.

outStream is the stream to write to. If not specified, a file with a .ser
extension is written to in the same location as the original source file.

public void setAssignment (JotAssignment assign);

public void setAssignment (String valueText);
Establish the assignment expression for this subcomponent.
assign is the expression as a JOT object.
valueText is the expression as text.

public void setCustomizerDialog(Dialog dialog);
Set the dialog to use when customizing this subcomponent.
dialog is the customizer to display.

public void setInitializer (String init);
Modify the initialization expression for this subcomponent.
init is the new expression.

public void setlLiveClass (String className) ;
Establish the class for this subcomponent.
className is the full name of the class.

public void setLiveInstance (Object instance);
Update the actual object that this subcomponent represents.
instance is the live object.

public void setNeedsSerialize (boolean yesNo) ;
Alter the serialization requirements of this subcomponent.

yesNo is true to indicate that the subcomponent has changed and should be
re—serialized, or false to denote no changes.
public void setScope (int scope);
Set the scope of this subcomponent’s variable.
scope 18 one of the constants below from this interface.

These fields are also available in this interface:
public static final int CLASS SCOPE;
public static final int METHOD SCOPE;
The scope of a variable: the whole class or just the Ul initialization method.

92 Part V: The Editors and Viewers

CmtFeature Interface

The com.borland.jbuilder.cmt.CmtFeature interface brings together
several abilities that apply to the attributes of a subcomponent: property, event, or
method.
These common abilities are:
public CmtComponent getComponent () ;
Retrieve the component that owns this attribute.
public String getDisplayName () ;
Obtain the display name for this component.
public String getName () ;
Get the name of the instance of this component.
public String getShortDescription();
Returns a short description for the component.
public boolean isExpert();
public boolean isHidden() ;
These methods indicate whether or not the attribute is shown when in expert
or hidden modes in the Inspector.

CmtProperty Interface

The com.borland.jbuilder.cmt.CmtProperty interface defines a property
of a component in a generic sense. It derives from CmtFeature. If you are after
the value of a property for a particular component, you need to use the
CmtPropertyState interface instead.

Find the properties for a component through the CmtComponent interface:

CmtProperty prop = component.getProperty ("maximumSize");
or

CmtProperty[] props = component.getProperties();

NOTE

The names of some properties have special meanings to JBuilder, identifying
pseudo—properties of a subcomponent. For instance, the name of a
subcomponent (its variable’s name) is not actually a property of the component,
but is needed by JBuilder for other purposes. Similarly, the constraints used to
add a component to a layout do not belong to that component, but are associated
with it. The names for these values are surrounded by angle brackets (< >) with
the first character following the opening bracket indicating a sort order amongst
names of this type. For example, the component’s variable name is held in a
property called “<aAname>", while its constraints may be called
“<Bconstraints>”". They are displayed at the top of the Inspector with their
names bolded.

The methods of this interface are:
public PropertyEditor getEditor();
Retrieve the property editor for this property, or null if there is none
specified. Any editor is defined as part of the BeanInfo for the component.
public JotMethod getReadMethod() ;
Locate the method within the component that reads the property’s value.

Chapter 20: Component Modeling Tool 93

public JotClass getType();
Find out the type (in JOT terminology) of this property.
public JotMethod getWriteMethod() ;
Get the component method that updates this property’s value.
public boolean isBound() ;
public boolean isConstrained();
Determine whether this property is bound or constrained with these methods.
public boolean isReadable();
public boolean isWritable();
Discover whether or not this property is readable or writable through these
methods.

The CmtEvent interface derives directly from CmtProperty and adds nothing
new. It simply serves as a marker for events as opposed to properties.

CmtPropertySource Interface

Extending CmtProperty is the com.borland.jbuilder.cmt.CmtProp-
ertySource interface, which allows you to alter some of the attributes of a
property. Usually you would just cast a CmtProperty instance to this one after
checking that it is available.

UNDOCUMENTED
This class is undocumented, even though there are links to it from other related
classes within the documentation.

Its new methods are:
public void setName (String name) ;
Change the name for this property.

name is the new name.

public void setReadable (boolean readable);
Update whether this property is write—only.

readable is true if the property value can be read, or false if it cannot.

public void setType (JotClass jotClass);
Alter the type of the property value.

jotClass is the new type (in JOT format).

public void setWritable (boolean writable);
Make the property readonly or available for alteration through this method.

writable is true if the property value can be updated, or false if it cannot.

The CmtEventSource interface descends directly from CmtPropertySource
and again adds nothing new, acting as a marker for events.

CmtPropertyState Interface

Each property of a subcomponent is embodied in a com.borland.jbuilder.
cmt.CmtPropertyState interface object. There may not be a corresponding
entry in the Ul initialization method, as occurs if this property contains its default
value. The presence of an associated CmtPropertySetting object denotes a
matching line of code.

94

Part V: The Editors and Viewers

Find the property states for a subcomponent through the CmtSubcomponent
interface:

CmtPropertyState propState = subcomponent.getPropertyState ("maximumSize") ;
or

CmtPropertyState[] propStates = subcomponent.getPropertyStates();

The methods of this interface are:

public CmtProperty getProperty();
Get the property to which this value applies.

public CmtPropertySetting getPropertySetting();
Obtain a reference to the property setting, or null if none is defined.

public CmtSubcomponent getSubcomponent () ;
Retrieve the subcomponent to which this property value applies.

public Object getValue();
Read the live value for this property. For a dimension property this would be
a Dimension object.

public String getValueSource();
Get the property value as source code. For a dimension property this might
be “new Dimension (51, 21)”.

public String getValueText ();
Obtain the property’s value as display text, using the associated property
editor. For a dimension property this might be “51, 21” and would be
shown in the Inspector.

public boolean isDefault();
Returns true if this value is the default for the property, or false if it is not.
Default values do not have code written out for them.

public boolean isPseudoPropertyState();
For properties that do not map directly onto the underlying component, this
method returns true. Otherwise it returns false. The “<Aname>” property that
JBuilder adds for the variable name would return true here. See the note
under CmtProperty for more details.

public boolean isReadOnly () ;
Returns true if this property is readonly, or false if it can be altered.

public void reset();
Change the property value back to its default.

public void setDefaultValue (Object value);
Update the default value for the property. When set to this value, no code is
written for the property. Sometimes it is necessary to change this to force a
value to be written.
value is the new default value.

public void setValue (Object value) throws
PropertyVetoException;
Establish the new value for this property as an object.
value is the new value object.

public void setValueSource (String value);
Set the property value as source code.

value is the new value source code.

Chapter 20: Component Modeling Tool 95

public void setValueText (String wvalue);
Alter the property’s value as a text expression, via the associated property
editor.
value is the new value as text.

public void triggerPropertyChange () ;
Notify interested parties that the property value has changed.

The CmtEventState interface derives directly from CmtPropertyState and
adds a single method. It mostly serves to identify event details rather than
property ones.
public String getDefaultHandlerText () ;
Get the text for the default event handler, such as “deleteButton
actionPerformed”.

CmtPropertySetting Interface

Properties with values other than their default have a corresponding line of code
in the UI initialization method to establish that setting. This is encapsulated by
the com.borland.jbuilder.cmt.CmtPropertySetting interface. You
retrieve an instance of this interface from the Cmt PropertyState object for the
property:

CmtPropertySetting setting = propertyState.getPropertySetting();
UNDOCUMENTED

This class is undocumented, even though there are links to it from other related
classes within the documentation.

public CmtMethodCall getMethodCall () ;
Returns a reference to the method call that sets this property’s value. For a
dimension property this may encapsulate the code: “deleteButton.
setMaximumSize (new Dimension (51, 21))”.

public CmtProperty getProperty();
Obtain a reference to the property associated with this setting.

public CmtSubcomponent getSubcomponent () ;
Get back to the subcomponent whose property this setting applies to.

public Object getValue();
Retrieve the value of this property as an object. For a dimension property this
would be a Dimension object.

public String getValueSource();
Returns the source code for this property value. For a dimension property this
might be “new Dimension (51, 21)”.

public void setValueSource (String value);
Update the source code for this property value.

value is the new setting code.

CmtModel Interface

The model of the Ul component hierarchy is accessible through the com.
borland.jbuilder.cmt.CmtModel interface, which maps onto the tree

96

Part V: The Editors and Viewers

structure displayed in the Structure Pane.

If you define your own designer enhancement, you usually implement this
interface to control which components it manages. Within the annotate method
of the Designer interface you would construct your model by scanning through
the components in the current class. Then you add the result to the
CmtComponentSource object provided. See Chapter 21 for more information
on interacting with the JBuilder designers.

The methods for this interface are shown below:
public CmtModelNode add(CmtModelNode parent, String

className, CmtModelNode aheadOf, CmtSubcomponent

subcomponent) ;

Add a new subcomponent to this model, and return a reference to its node. In

this method you may need to add text for the new component to the source

file for the main class.

parent is the node beneath which the new node is added.

className is the full name for the class of the component being added.

aheadoOf is an existing node to mark the position of the new node. If null,
the new node appears at the end of the list of children.
subcomponent is the CMT wrapper for the component if it has already been
claimed by another model. It is nul1 if this model is the primary one.
public void close();
Close down the model and release any resources it may have acquired.
public CmtModelNode[] getChildren (CmtModelNode parent) ;
Get a list of the child nodes for a given node. If there are no children, an
empty array should be returned.
parent is the node whose children are retrieved.
public CmtComponent getComponent () ;
Obtain a reference to the component represented by this model.
public DefaultTreeModel getGraph () ;
Gain access to the model underlying the tree displayed in the Structure Pane
through this method.
public String getName () ;
Return the name of this model.
public CmtModelNode getRoot () ;
Retrieve the root of this model.
public boolean isMultilInstance();
Determine whether this model is multi—instance, returning true if it is, or
false if it is not.
public boolean isSubcomponentOwned (CmtSubcomponent
subcomponent) ;
Does this model claim ownership of a subcomponent? If this method returns
true then the subcomponent only appears within this model, and is not
available to any other models.
subcomponent is the component being tested.
public CmtModelNode move (CmtModelNode node, CmtModelNode
newParent, CmtModelNode aheadOf) ;
Move an existing node in the tree from one branch to another, returning a
reference to that node.

Chapter 20: Component Modeling Tool 97

node is the node to move, as well as the return value.
newParent is the node that becomes the new parent for the moved node.

aheadOf is an existing node beneath that parent to position the new node
before. If null, the node is moved to the end of the new parent’s list of
children.

public void remove (CmtModelNode node) ;
Delete a node from the model.

node is the node to delete.

CmtModelNode Interface

Whereas CmtModel defines the model as a whole, each node within that model is
an instance of the com.borland.jbuilder.cmt.CmtModelNode interface.
You implement this interface on the nodes that make up your model (see above).
Each node may want to listen in on property changes to the associated
subcomponent so that you can update the tree display when a component’s
details are altered. To do this, implement the PropertyChangelListener
interface on this class as well, and use code like the following in its constructor:

if (subcomponent != null) {
subcomponent .addPropertyChangelistener (this) ;

}

This interface extends the standard TreeNode one, adding the methods below:

public CmtModel getCmtModel () ;
Retrieve the model that owns this node via this method.

public CmtSubcomponent getSubcomponent () ;
Access the subcomponent that this node represents within the tree through
this method.

public String getTag() ;
Return the name of an icon to use for this node in case its component does
not supply one through its BeanInfo, or null to have no backup icon. This
name was previously registered with the Component Tree by -calling
addImage In com.borland.jbuilder.designer.tree.Component-
ViewTreeCellRenderer

public boolean isDesignable();
Enable or disable the Activate Designer menu entry on the designer context
menu for this node. Return true to enable it, or false to disable it.

CMT Example

To demonstrate some of the information available through the CMT, the example
presented here just dumps details about subcomponents in the current node to the
output stream (see Listing 20—1). It creates two menu items on the Tools menu to
display a short or full version of the information. These menu items are only
enabled when the Design tab is open for a node, since the designer viewer is used
to retrieve the initial CMT references. The update method of the underlying
BrowserAction class lets you disable the menu entries when necessary.

98 Part V: The Editors and Viewers

Listing 20—1. Dumping CMT information.

package wood.keith.opentools.cmtdump;

import com.borland.jbuilder.JBuilderMenu;
import com.borland.jbuilder.cmt.CmtEventState;
import com.borland.jbuilder.cmt.CmtPropertyState;
import com.borland.jbuilder.cmt.CmtSubcomponent;
import com.borland.jbuilder.designer.DesignerViewer;
import com.borland.primetime.PrimeTime;
import com.borland.primetime.ide.Browser;
import com.borland.primetime.ide.BrowserAction;
/**
* Demonstrate navigation through the CMT hierarchy in JBuilder.
*
* @author Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 23 April 2002
/
public class CMTDump extends BrowserAction {

/**
* Add the action to the menu.
*
* @param majorVersion the major version of the current OpenTools API
* @param minorVersion the minor version of the current OpenTools API

/
public static void initOpenTool (byte majorVersion, byte minorVersion) {
if (majorVersion != PrimeTime.CURRENT MAJOR VERSION) {
return;

}
JBuilderMenu.GROUP_Tools.add (new CMTDump (false)) ;
JBuilderMenu.GROUP Tools.add (new CMTDump (true)) ;

}

private boolean full = false;
/**

* Initialise the action.

*

* @param full true to dump all attributes,

By false to just get the type and name
R4
public CMTDump (boolean full) {
super ("CMT Dump - " + (full 2 "Full" : "Short"), 'D',
"Dump the " + (full ? "full" : "short") + " CMT hierarchy"):;

this.full = full;
}

/**
* Start dumping the CMT hierarchy for the current class.
*
* @param browser 1is the active browser
R4
public void actionPerformed(Browser browser) {
DesignerViewer viewer =
(DesignerViewer)browser.getActiveViewer (browser.getActiveNode ()) ;
CmtSubcomponent [] subcomps = viewer.getSubcomponents () ;
for (int index = 0; index < subcomps.length; index++) {
dumpComponent (subcomps [index]) ;

}

/**
* Dump the CMT details for the current class.
*

* @param component 1s the current component

74
private void dumpComponent (CmtSubcomponent component) {
if (full) {

System.out.println ("-——————————————) g
System.out.println(

Chapter 20: Component Modeling Tool 99

component.getComponent () .getLiveClazz () .getName ()) ;
// List properties and their settings
System.out.println ("Properties:") ;
CmtPropertyState[] properties = component.getPropertyStates();
for (int index = 0; index < properties.length; index++) {
System.out.println (
" + properties[index].getProperty () .getName () +

" = " + properties[index].getValueText () +
" | " + properties[index].getValue() +
" | " + properties[index].getValueSource () +
" | " + properties[index].isDefault () +
" | " + properties[index].isPseudoPropertyState());
if (properties|[index].getPropertySetting() != null) {
System.out.println (" Setting: " +
properties[index] .getPropertySetting () .getValue() + " | " +

properties[index] .getPropertySetting () .getValueSource () +
" | " + properties[index].getPropertySetting() .
getMethodCall () .getJotMethodCall () .getText ()) ;
}
}
// List events and their settings
System.out.println ("Events:") ;
CmtEventState[] events = component.getEventStates();
for (int index = 0; index < events.length; index++) {
System.out.println (
" + events[index].getProperty () .getName () +

" = " + events[index].getValueText () +
" | " + events[index].getValue () +
" | " + events[index].getValueSource () +
" | " + events[index].getDefaultHandlerText () +
" | " + events[index].isDefault () +
" | " + events[index].isPseudoPropertyState());
if (events[index].getPropertySetting() != null) {
System.out.println (" Setting: " +
events[index].getPropertySetting() .getValue() + " | " +

events[index] .getPropertySetting () .getValueSource () +
" | " + events[index].getPropertySetting() .
getMethodCall () .getJotMethodCall () .getText ()) ;
}
}
// List other miscellaneous settings
System.out.println ("Other") ;

System.out.println (" Assignment: " +
(component.getAssignment () == null ? "null"
component.getAssignment () .getText ())) ;

System.out.println (" Declared class: " +
(component.getDeclaredClass () == null ? "null"”
component.getDeclaredClass () .getName())) ;

System.out.println (" Default event state: " +
(component.getDefaultEventState () == null ? "null"

component.getDefaultEventState () .getProperty () .getName () +

" = " + component.getDefaultEventState () .getValueText())):;
System.out.println (" Default property state: " +

(component.getDefaultPropertyState() == null ? "null"”

component.getDefaultPropertyState () .getProperty () .getName () +

" = " + component.getDefaultPropertyState () .getValueText()))

System.out.println (" Initializer: " +
(component.getInitializer () == null ? "null"
component.getInitializer () .getText ()));

System.out.println (" InitMethod: " +
(component.getInitMethod() == null ? "null"

component.getInitMethod () .getJotMethodSource () .
getCodeBlock () .getText ())) ;

System.out.println (" LiveClass: " +
component.getLiveClass () .getName ()) ;
System.out.println (" LiveInstance: " +

component.getLivelnstance (true)) ;
CmtMethodCall[] calls = component.getMethodCalls() ;
for (int index = 0; index < calls.length; index++) {
System.out.println (" MethodCall " + index + ": " +

100

Part V: The Editors and Viewers

calls[index] .getJotMethodCall () .getText ()) ;
}

System.out.println (" Name: " + component.getName())
System.out.println (" OuterComponent: " +
(component.getOuterComponent () == null ? "null"”
component .getOuterComponent () .getName ())) ;
System.out.println (" Scope: " + component.getScope()):;
System.out.println (" SourceName: " + component.getSourceName ()) ;
}
else {

// For short form, just list type and name

System.out.println (
component.getComponent () .getLiveClazz () .getName () + " " +
component.getName ()) ;

}

/**
* Alter the enabled/disabled setting for this action.

*

* @param browser 1is the active browser
4
public void update (Browser browser) {
setEnabled (browser.getActiveViewer (browser.getActiveNode ())
instanceof DesignerViewer) ;

}

The short form of the subcomponent dump simply lists the type and variable
name for each subcomponent found in the open class. The full version starts by
listing the subcomponent’s type, followed by all of its properties, showing both
name and value. Then comes the list of its events, again showing name and
current value. Finally there is a collection of other miscellaneous details,
including the initialization string for the variable, its scope, and the list of
methods from the UI initialization routine that establish its attribute values. The
full details output for one subcomponent is shown in Listing 20-2.

Listing 20-2. Subcomponent details.

javax.swing.JButton

Properties:
<Aname> = deleteButton | deleteButton | deleteButton | false | true
background = 204, 204, 204 | javax.swing.plaf.ColorUIResource[r=204,

g=204,b=204] | new Color (204, 204, 204) | true | false
componentOrientation = | java.awt.ComponentOrientation@45105c | | true
| false
cursor = | java.awt.Cursor[Default Cursor] | | true | false
dropTarget = | null | null | true | false

enabled = True | true | propTable.getSelectedRow() > -1 | false | false
Setting: null | propTable.getSelectedRow() > -1 | deleteButton.
setEnabled (propTable.getSelectedRow () > -1)

font = "Dialog", 1, 12 | javax.swing.plaf.FontUIResource[family=
dialog.bold, name=Dialog,style=bold, size=12] | new java.awt.Font (
"Dialog", 1, 12) | true | false

foreground = Black | javax.swing.plaf.ColorUIResource|[r=0,g=0,b=0] |
Color.black | true | false

locale = <default> | en AU | java.util.Locale.getDefault () | true |
false

name = null | null | null | true | false

visible = True | true | true | true | false

alignmentX = 0.0 | 0.0 | (float) 0.0 | true | false

alignmentY = 0.5 | 0.5 | (float) 0.5 | true | false

autoscrolls = False | false | false | true | false

border = Compound Border | javax.swing.plaf.BorderUIResource$
CompoundBorderUIResource@7d32cf | | true | false

debugGraphicsOptions = <default> | 0 | 0 | true | false

doubleBuffered = False | false | false | true | false

maximumSize = 51, 21 | java.awt.Dimension[width=51,height=21] | new

Chapter 20: Component Modeling Tool 101

Dimension (51, 21) | false | false
Setting: java.awt.Dimension[width=51,height=21] | new Dimension (51,
21) | deleteButton.setMaximumSize (new Dimension (51, 21)
minimumSize = 51, 21 | java.awt.Dimension[width=51,height=21] | new
Dimension (51, 21) | false | false
Setting: java.awt.Dimension[width=51,height=21] | new Dimension (51,
21) | deleteButton.setMinimumSize (new Dimension (51, 21)
nextFocusableComponent = | null | null | true | false
opaque = True | true | true | true | false
preferredSize = 51, 21 | java.awt.Dimension[width=51,height=21] | new
Dimension (51, 21) | false | false
Setting: java.awt.Dimension[width=51,height=21] | new Dimension (51,
21) | deleteButton.setPreferredSize (new Dimension (51, 21)
requestFocusEnabled = True | true | true | true | false
toolTipText = Delete this property | Delete this property | "Delete this
property" | false | false
Setting: Delete this property | "Delete this property" |
deleteButton.setToolTipText ("Delete this property")
actionCommand = Delete | Delete | "Delete" | true | false

borderPainted = True | true | true | true | false

contentAreaFilled = True | true | true | true | false

disabledIcon = | null | null | true | false

disabledSelectedIcon = | null | null | true | false

focusPainted = True | true | true | true | false

horizontalAlignment = CENTER | O | SwingConstants.CENTER | true | false
horizontalTextPosition = TRAILING | 11 | SwingConstants.TRAILING | true
false

icon = | null | null | true | false
margin = 2, 4, 2, 4 | java.awt.Insets[top=2,left=4,bottom=2,right=4] |
new Insets (2, 4, 2, 4) | false | false
Setting: java.awt.Insets|[top=2,left=4,bottom=2,right=4] | new
Insets (2, 4, 2, 4) | deleteButton.setMargin (new Insets (2, 4, 2, 4))
mnemonic = D | 68 | 'D' | false | false
Setting: 68 | 'D' | deleteButton.setMnemonic ('D"')
model = | javax.swing.DefaultButtonModel@5c8f6d | | true | false
pressedIcon = | null | null | true | false
rolloverEnabled = False | false | false | true | false
rolloverIcon = | null | null | true | false
rolloverSelectedIcon = | null | null | true | false
selected = False | false | false | true | false
selectedIcon = | null | null | true | false
text = Delete | Delete | "Delete" | false | false
Setting: Delete | "Delete" | deleteButton.setText ("Delete")

verticalAlignment = CENTER | O | SwingConstants.CENTER | true | false

verticalTextPosition = CENTER | O | SwingConstants.CENTER | true | false

<Bconstraints>» = (3, 7, 1, 1, 0.0, 0.0, 11, 2, [O, O, 2, O], O, O] |
java.awt.GridBagConstraints@4c72e3 | new GridBagConstraints (3, 7, 1, 1,
0.0, 0.0,GridBagConstraints.NORTH, GridBagConstraints.HORIZONTAL, new

Insets (0, 0, 2, 0), 0, 0) | false | true
<CbuttonGroup> = <none> | null | null | false | true
Events:

componentResized = null | null | null | deleteButton componentResized |
true | false

componentMoved = null | null | null | deleteButton componentMoved | true
| false

componentShown = null | null | null | deleteButton_componentShown | true
| false

componentHidden = null | null | null | deleteButton componentHidden |
true | false

focusGained = null | null | null | deleteButton focusGained | true |
false

focusLost = null | null | null | deleteButton focusLost | true | false

hierarchyChanged = null | null | null | deleteButton hierarchyChanged |
true | false

ancestorMoved = null | null | null | deleteButton ancestorMoved | true |
false

ancestorResized = null | null | null | deleteButton ancestorResized |
true | false

keyTyped = null | null | null | deleteButton keyTyped | true | false

keyPressed = null | null | null | deleteButton keyPressed | true | false

102

Part V: The Editors and Viewers

keyReleased = null | null | null | deleteButton keyReleased | true |
false
mouseClicked = null | null | null | deleteButton mouseClicked | true |

false

mousePressed = null | null | null | deleteButton mousePressed | true |
false

mouseReleased = null | null | null | deleteButton mouseReleased | true |
false

mouseEntered = null | null | null | deleteButton mouseEntered | true |
false

mouseExited = null | null | null | deleteButton mouseExited | true |
false

mouseDragged = null | null | null | deleteButton mouseDragged | true |
false

mouseMoved = null | null | null | deleteButton mouseMoved | true | false

inputMethodTextChanged = null | null | null |
deleteButton inputMethodTextChanged | true | false

caretPositionChanged = null | null | null |
deleteButton caretPositionChanged| true | false

propertyChange = null | null | null | deleteButton propertyChange | true
| false
componentAdded = null | null | null | deleteButton componentAdded | true
false
componentRemoved = null | null | null | deleteButton componentRemoved |
true | false

vetoableChange = null | null | null | deleteButton vetoableChange | true
| false

ancestorAdded = null | null | null | deleteButton ancestorAdded | true |
false

ancestorRemoved = null | null | null | deleteButton ancestorRemoved |
true | false

ancestorMoved = null | null | null | deleteButton ancestorMoved | true |
false

stateChanged = null | null | null | deleteButton stateChanged | true |
false

actionPerformed = null | null | null | deleteButton actionPerformed |
true | false

itemStateChanged = null | null | null | deleteButton itemStateChanged |
true | false
Other

Assignment: null

Declared class: javax.swing.JButton

Default event state: actionPerformed = null

Default property state: null

Initializer: new JButton ()

InitMethod: {

this.setPageTitle ("JSP Tag Class");
try {
this.setLargelIcon (new ImageIcon (
JSPTagWizardPage.class.getResource (
"/com/borland/Jjbuilder/wizard/jsp/JIspWizardLarge.gif™)));

}
catch (Exception ex) {
// Ignore
}
this.setInstructions (
"Enter a name for your class, what sort of functionality " +
"it supports, and any properties that it accepts.");
this.setLayout (borderLayout) ;

jLabell.setDisplayedMnemonic ('K"') ;
jLabell.setLabelFor (packageCombo) ;
jLabell.setText ("Package") ;

// Other UI initialization code removed
deleteButton.setToolTipText ("Delete this property");
deleteButton.setMargin (new Insets (2, 4, 2, 4));
deleteButton.setMnemonic ('D"') ;
deleteButton.setText ("Delete") ;
deleteButton.setPreferredSize (new Dimension (51, 21));
deleteButton.setMinimumSize (new Dimension (51, 21));

Chapter 20: Component Modeling Tool 103

deleteButton.setMaximumSize (new Dimension (51, 21));
deleteButton.addActionListener (
new java.awt.event.ActionListener () {
public void actionPerformed (ActionEvent e) {
deleteButton actionPerformed (e);

}
)i

// Other UI initialization code removed
this.add (bodyPanel, BorderLayout.CENTER) ;
bodyPanel.setlLayout (gridBaglLayout) ;

bodyPanel.add(jLabell, new GridBagConstraints(0O, 1, 1, 1, 0.0, 0.0
,GridBagConstraints.CENTER, GridBagConstraints.HORIZONTAL,
new Insets(0, 0, 2, 0), 0, 0));
// Other UI initialization code removed
bodyPanel.add (deleteButton,
new GridBagConstraints(3, 7, 1, 1, 0.0, 0.0
,GridBagConstraints.NORTH, GridBagConstraints.HORIZONTAL,
new Insets(0, 0, 2, 0), 0, 0));
// Other UI initialization code removed

}
LiveClass:

MethodCall
MethodCall
MethodCall
MethodCall
MethodCall

javax.swing.JButton
LiveInstance:
javax.swing.JButton[,189,151,51x21, layout=Jjavax.swing.OverlayLayout,alignm
entX=0.0,alignmentY=0.5,border=Jjavax.swing.plaf.BorderUIResource$CompoundB
orderUIResource@7d32cf, flags=1696, maximumSize=java.awt.Dimension[width=51,
height=21],minimumSize=java.awt.Dimension[width=51, height=21],preferredSiz
e=java.awt.Dimension[width=51,height=21],defaultIcon=,disabledIcon=,disabl
edSelectedIcon=,margin=java.awt.Insets[top=2,left=4,bottom=2, right=4],pain
tBorder=true, paintFocus=true,pressedIcon=,rolloverEnabled=false,rolloverIc
on=,rolloverSelectedIcon=,selectedIcon=, text=Delete,defaultCapable=true]

0:
1:
23
3:
4:

deleteButton.setToolTipText ("Delete this property")
deleteButton.setMargin (new Insets (2, 4, 2, 4))
deleteButton.setMnemonic ('D")

deleteButton.setText ("Delete")
deleteButton.addActionListener (new

java.awt.event.ActionListener () {
public void actionPerformed (ActionEvent e) {
deleteButton actionPerformed (e);

}
})
MethodCall

53

deleteButton.addActionListener (new

java.awt.event.ActionListener () {
public void actionPerformed (ActionEvent e) {
deleteButton actionPerformed (e);

}
})
MethodCall

61

deleteButton.addActionListener (new

java.awt.event.ActionListener () {
public void actionPerformed (ActionEvent e) {
deleteButton actionPerformed (e);

}

})
MethodCall
MethodCall
MethodCall
MethodCall

7:
8:
9:
10:

deleteButton.setPreferredSize (new Dimension (51, 21))
deleteButton.setMinimumSize (new Dimension (51, 21)
deleteButton.setMaximumSize (new Dimension (51, 21)
deleteButton.setEnabled (propTable.getSelectedRow () > -1)

Name: deleteButton
OuterComponent: wood.keith.opentools.wizards.jsptags.JSPTagWizardPage

Scope: 1
SourceName:

deleteButton

104 Part V: The Editors and Viewers

Summary

The Component Modeling Tool provides wrapper classes that let you delve into a
Java source file and discover what components are declared therein. You can the
query them for attribute settings, and update these as necessary. CMT builds
these abilities on top of the Java parsing supplied by the Java Object Toolkit
JOT).

As an example of its abilities, the demonstration program presented here just
dumps the component contents of the current file to standard output. It lists each
of the subcomponents within the file, along with their property values and event
settings. If in summary mode, only the component’s name is displayed.

The CMT is used as part of the following two chapters: in the Ul designers
that enable you to graphically layout your components, and in the layout
assistants that provide feedback when working with layout managers in the
designer.

ighers

0e1

Within the Content Pane appears a set of tabs, one for each file that is opened,
either along the top or the side of the pane. For each file there is a set of sub—tabs
along the bottom of the pane that provide access to the various node viewers that
apply to that file type (see Chapter 18 for more details on node viewers). Java
source files have a Design tab appearing for them, allowing you to visually
design the user interface portion of the class.

The Design tab is made up of several interacting parts (see Figure 21-1): the
design surface itself, the Component Palette, the Inspector, and the Structure
Pane. Components are selected from the Component Palette and then placed onto
the design surface (representing the basic container of the main class). Various
tabs within the palette let you organize the available components to make them
easier to find.

Once a component is selected you can drop it either directly onto the design
surface or onto the Component Tree in the Structure Pane. In either case, the new
component is assigned to a particular node within the Component Tree and may
appear on the design surface as well (if it is a visual component).

Activating a component (by double—clicking it in the Component Tree, or by
right—clicking and selecting Activate Designer) causes its associated designer to
be invoked and to be informed of the selection of that component. The public
JavaBean—style properties of the component can then be modified through the
Inspector.

A designer, in the Ul sense, provides support for different types of
components within a class, letting you graphically interact with them. There are
two parts to this support: identifying the managed components and presenting
them in the Component Tree, and supplying a design surface for those
components in the Content Pane to let you customize them. Although JBuilder
has other tools called designers, this chapter only deals with those attached to the
Design node viewer for Java files.

There are three basic designers supplied with JBuilder. The first is the Ul
designer (attached to objects in the Ul category within the Component Tree) for
visual components. It displays the component as it would appear at runtime, and
handles any processing for layout managers (see Chapter 22) and contained
controls.

105

106 Part V: The Editors and Viewers

Figure 21—1. The Design tab for a Java source file.

@JBuilder X - C:/JBuilderfOpenToolsiToolbarsfsrefwood/keithfopentoolsftoolbarsfToolBarsWizardPage. java

File Edit Search Refactor Wiew Project Run Team ‘Wizards Tools MWindow Help Purchase

N-HEEE-DEP S|~ B 4 Ml Sl % 3o
BHp--to-ndl-¢ 9 €248 F B-
[Z] Project r XJ@ classes rﬁ{ﬁ ToolBarsPropertyGroup rf_iﬁﬁ ToolBarswizard r_)sjﬁﬁ ToolBars\WizardPage |

T E E 2 & Tod. - jre
%ﬂ pa . o [Hhan rSWing rSWing Containers rDataExpress rdbSWing rMDre clhSwing rdbSWing hodels rlnternetEieans- il »

9 (o @ mm w— e][T | o0 e e S e 6)

g TUOEar SFTUpET U Er oo, T3V
®% ToolBarswizard.java
ﬁﬁ ToolBarswizardPage. java
up.gif

% Documentation

5 OpenTool

T
this

Choose actions from those available to add to the groups on the
JBuilder koolbar. You can also add new external actions ko the available
list and then mawve them onto the toolbar,

} ToolBars Manager

O, structure

2 wuo0d. keith.opentaols. boolbars, Tol Selected ’E Available
= L - ~
=1 [this (BarderLayaut) 3 colors = [colors
borderLayout [sports m [sports
[] _bodyPanel (Grideagl : 3 food 3 Fond
__ | Menu : E
__| Data Access
=] Default E "
@ GIF_FILE_DESC [~]
#® GIF_FILE_EXT
. - 5
#* _jcons)
@ _lastFilename
@ _gallery
[opanue
[pagestyle
[pageTitle
£ _ 5
D Properties -

]’ Source | Design | Bean | Doc | History | Diff Yiew

1]
this {BorderLayout)

Secondly, there is the menu designer for objects under the Menu category. It lets
you visually design a menu structure for your GUI, adding menu items as
necessary and then setting their captions and abilities.

Lastly, there is the data access designer for objects under the Data Access
category. It works with components from the DataExpress tab in the Palette,
allowing you to define the fields that belong to data sources.

Any objects that are not claimed by one of the above designers are
automatically picked up by the Other category. These objects have no designer
associated with them; however, selecting them does load the Inspector with their
property values and lets you modify them.

You can enhance the design experience by providing your own designers for
certain components. Your designer must implement the Designer interface, and
you must register an instance of it with the DesignerManager class.

DesignerManager.registerDesigner (new MyDesigner());

Typically your designer would add new nodes to the Component Tree within the
Structure Pane. A multi—level hierarchy could be constructed if it is appropriate
for the components being handled. For more functionality, the activation of one
of these nodes can open up a customized designer that lets you easily interact
with the selected object.

Chapter 21: UI Designers 107

DesignerManager Class

The com.borland.jbuilder.designer.DesignerManager class provides
your gateway into the designer processing of JBuilder. It lets you register interest
in events that occur during the design process, as well as registering your new
designer for inclusion as appropriate. The main methods used during the design
phase are shown below. Note that many are static methods, being called directly
from the class reference.
public static synchronized void addDesignerListener (
DesignerListener listener);
Add a listener for events that occur during the design processing, such as
opening and closing designers. See the next section for more details on the
listener.

listener is the object interested in the designer events.

public static synchronized void addDesignerReleaselistener (
DesignerReleaselistener listener);
To be notified when a component within a designer is being released, call
this method. See the section below for the listener’s events.
listener is the object to be informed of the release events.

public Designer getDesigner (CmtModel model) ;
Retrieve the designer appropriate to the supplied model.

model is the CMT wrapper around the model and its tree.

NOTE
See the previous chapter for more details on the Component Modeling Tool
(CMT).

public ArraylList getDesignerViewers();
Obtain a list of all the current viewers. Each entry in the array is a
DesignerViewer object.

VERSION
The getDesignerViewers method is not available in JBuilder 7.

public static DesignerManager getInstance();
Return the singleton instance of this class within JBuilder.
public void lookupHelp (String className, String
propertyName) ;
Bring up help for the nominated class and property.
className is the full name of the class to locate the help for.

propertyName is the name of the particular property within that class to
show.

public static synchronized void registerDesigner (Designer
designer) ;
Register a new designer implementation with JBuilder so that it is invoked
along with the standard ones when processing the components within the
designer tab.

designer is an instance of the new designer implementation.

108 Part V: The Editors and Viewers

public static synchronized void removeDesignerListener (
DesignerListener listener);
Remove a previously added listener for designer events with this method.

listener is the object that no longer wants notification of the designer
events.
public static synchronized void

removeDesignerReleaselListener (
DesignerReleaselistener listener);

Stop listening to release events for the designers through this method.

listener is the object that no longer wants notification of the release
events.

The DesignerManager has several other methods but these do not apply to the
design process and so are not covered here.

DesignerListener and
DesignerReIeaseListener Interfaces

Various events that occur during the processing of the designer interfaces are
available for interested classes to respond to. The com.borland.jbuilder.
designer.DesignerListener interface lets you react to the opening and
closing of designers, as well as other events as shown below. Register your
interest through the addDesignerListener method of the DesignerManager
class.
public void designerClosed (DesignerEvent event);

To respond when a designer is closed, implement this method.

event contains the details of the designer that closed.

WARNING
The designerClosed and designerClosing methods never seem to be
called by JBuilder.

public void designerClosing (DesignerEvent event);
Notification of the closing of a designer, but before it has closed, comes
through this method.
event contains the details of the designer being closed.

public void designerOpened (DesignerEvent event);
Find out about designers that have opened completely via this method.
event contains the details of the designer that opened. Use its
getComponent method to retrieve the component being opened, and the
getContext method for the DesignerViewer instance (the one behind the
Design tab).

public void designerOpening (DesignerEvent event);
Implement this method to be informed of designers that are opening to
prepare for their instantiation. The method is actually called twice before the
designer fully opens.
event contains the details of the designer being opened. Find the component
that caused the opening via the event’s getComponent method and the
DesignerViewer through the getContext method.

Chapter 21: UI Designers 109

NOTE
The designerOpening method may be called more than once per opening.

public void designerShow (DesignerEvent event) ;
This method is called whenever the designer is shown or reactivated. It may
be called many times.
event contains the details of the designer being shown, including the
component that is being shown and its DesignerViewer.

public void designerToolSelected (DesignerEvent event);
Whenever a tool is chosen from the Component Palette, this method informs
you of it.
event contains the details of the selection, in particular the name of the tool
from its getToo1Name method.

WARNING
The designerToolSelected method never seems to be called by JBuilder.

To react to the release of a component from a designer instance, you need to
implement the com.borland.jbuilder.designer.DesignerRelease-
Listener interface whose methods are listed below. Use the addDesigner-
ReleaseListener method of the DesignerManager class to register your
object to receive these calls.
public void designerReleased (DesignerEvent event);
Find out about designers that are finished with a component and have closed
it through this method.
event contains the details of the component that closed.
public void designerReleasing(DesignerEvent event);
Before a component being shown by a designer is released, this method lets
you prepare for its disappearance.

event contains the details of the component being closed.

To send off one of these events, for either interface, you call the Designer-
Manager’s processDesignerEvent method and pass along an appropriate
instance of DesignEvent class.

DesignerEvent Class

This class encapsulates information about events within the designer
environment. These events include the opening and closing of designers, showing
or hiding the designer window, saving changes made within a designer, or
selecting a component from the palette. They appear as parameters of the
DesignerListener and DesignerReleaselistener method calls.

Depending on the type of event that occurs, you can retrieve information
about the designer being opened or closed, the component being affected, or the
tool being selected from the Component Palette. Use the corresponding methods
from the list below to obtain these data.

110

Part V: The Editors and Viewers

public DesignerEvent
public DesignerEvent
public DesignerEvent
public DesignerEvent
component) ;
public DesignerEvent (Object source, CmtComponentSource
component, Designer designer);
public DesignerEvent (Object source, String toolName) ;
Create a new event instance from the parameters specified with one of these
constructors. Typically these events are generated by JBuilder itself and are
passed on to you through the appropriate listener methods.

Object source);

Object source, int id);

Object source, boolean show);
Object source, CmtComponentSource

—~ e~~~

source is the DesignerViewer instance associated with this event.

id is the event type based on one of the static field values from this class. If
defaults to COMMITED if no parameters other than source are given.

show is true when a component is being shown and false when it is being
hidden. When this version of the constructor is used, the event type becomes
SHOW.

component is the CMT wrapper for the component affected. If the
designer is not specified when component is given the event type is set to
OPENING.

designer is the Designer instance for this event. The event type is set to
OPENED when this parameter is specified.

toolName is the name of the component selected from the Component
Palette. In this case, the event type becomes TOOL SELECTED.

public void dispatch (EventListener eventlistener);
Send this event on to the listener passed in, calling the appropriate method
based on the event’s type.
eventListener is the listener for these events. Note that it must be an
implementation of either the DesignerListener or DesignerRelease-
Listener interfaces according to the type of the event.

public CmtComponentSource getComponent () ;
Retrieve the CMT wrapper for the component through this method.

public DesignerViewer getContext ();
Find the designer viewer (the one behind the Design tab) associated with this
event via this method.

public Designer getDesigner();
Return the designer implementation from this method. It should have a value
for an OPENED event, and is null otherwise.

public boolean getShow() ;
This method returns true if the component is being shown and false if it is
being hidden. It is false if the event type is not SHOW.

public String getToolName () ;
Retrieve the name of the component selected from the palette with this
method. It is null if the event type is not TOOL SELECTED.

public boolean isReleaseEvent () ;
Returns true if this event is either a releasing or a released event, or false for
all other event types.

The constants defined in this class indicate what type of event is occurring;:

Chapter 21: UI Designers 111

public static final int CLOSED;

public static final int CLOSING;
A component has closed or is closing. In the latter case you should save any
pending updates.

public static final int COMMITED;
Any changes have been written out to the source file.

public static final int OPENED;

public static final int OPENING;
A component has been opened and a designer selected, or is about to be
opened.

public static final int RELEASED;

public static final int RELEASING;
A component has closed or is closing (save any outstanding changes). These
types track the release of subcomponents.

public static final int SHOW;
The designer window is being shown or hidden.

public static final int TOOL SELECTED;
A tool from the palette has been chosen.

Designer Interface

To add new abilities to the designer process, you need to create a class that

implements the com.borland.jbuilder.designer.Designer interface.

This lets you add new items to the Component Tree within the Structure Pane

and to bring up your own customized designer interface for the components that

you manage.

public boolean activate (CmtComponentSource componentSource,
CmtModelNode root, CmtModelNode node, DesignerViewer
viewer) ;
Bring the view for the given model node up to date. It is called once when
the designer is first opened, and then whenever the user requests it. The
method returns true if the viewer can be activated, or false if it cannot.

Retrieve a reference to any existing viewer component through the

DesignerViewer object. If one does not exist you should create a new
instance and set it for this node.

InternetBeansViewer designer =
(InternetBeansViewer)viewer.getDesignView (this) ;

if (designer == null) {
// Create and register the UI for the designer
designer = new InternetBeansViewer () ;

viewer.setDesignView (this, designer);

}

componentSource is the source file reference for the components handled
by this designer.

root is the CMT wrapper for root of the model sub—tree being opened. This
is the first node below the category node within the Component Tree in the
Structure Pane.

node is the CMT wrapper for the current model node being opened. It may
be the same as the root node.

viewer is the instance of the viewer for this node.

112 Part V: The Editors and Viewers

public void annotate (CmtComponentSource componentSource,

CmtComponents components) ;

This is the main method of the Designer interface that you need to
implement as it allows you to add new nodes to the Component Tree in the
Structure Pane. Within this method you typically create your top—level node
and construct an appropriate tree structure beneath it (the model),
corresponding to the components that this designer deals with. Components
within the class are accessible through the following call:

CmtSubcomponent [] subcomponents = componentSource.getSubcomponents () ;

You can then walk through the array, picking out any components of interest
and add them to your model.

At the end of the sub—tree creation, you call the componentSource.
addModel method to add the hierarchy to the Component Tree for the file.
You may add any number of sub—trees using this method.

The method is called when the designer is first opened for a file, and
again whenever its nodes are altered. It should not perform any activities
related to the viewer for this designer.
componentSource is the source file reference for the components handled
by this designer.
components is an interface to the JOT representation of the source file.

public void close (CmtComponentSource componentsource,
DesignerViewer viewer);
Finishes up the processing for a given source file and lets you release any Ul
components created. If you had registered for notification of changes to the
Structure Pane tree, you should unregister at this time too.
viewer.getSelection () .removeTreeSelectionListener (this) ;
componentSource is the source file reference for the components handled
by this designer.
viewer is the instance of the viewer for this node.

public String getModelName () ;
Return the name for this designer’s model. It must match the value returned
by the getName method of that model.

public void open (CmtComponentSource componentsource,
DesignerViewer viewer);
Create the Ul for the designer when a file is opened.
MyViewer designer = (MyViewer)viewer.getDesignView (this);
if (designer == null) {

designer = new MyViewer () ;
viewer.setDesignView (this, designer);

}
You may also want to register to be notified of selection changes to the tree
structure within the Structure Pane, as shown below:

viewer.getSelection() .addTreeSelectionListener (this);
componentSource is the source file reference for the components handled
by this designer.

viewer is the instance of the viewer for this node.

Chapter 21: UI Designers 113

InternetBeansDesigner Example

To demonstrate how the UI designer API can be used to add functionality, you
can develop support for the InternetBeans components available on the Palette
tab of the same name. These controls assist in creating and handling the
presentation layer of a Web application. You create a static JSP and embed the
controls within it as placeholders for dynamic content, typically coming from a
database.

NOTE
Since this example revolves around the InternetBeans components, you may not
be able to compile or run it on some editions of JBuilder, such as the Personal
edition.

InternetBeans fall into two main types: those that descend from
IxPageProducer and those that descend from IxComponent (both in the
com.borland.internetbeans package). The page producers read an HTML
template file and parse its contents to fill in the dynamic portions. Meanwhile,
the components represent HTML controls and generate appropriate tags for them
within the page. Components are linked to a page producer and its HTML
through their pageProducer property, and then to a tag on the page via the
controlName or elementId properties.

By default, all of these controls appear beneath the Other category in the
Structure Pane since no other node claims them. The designer developed in this
example creates a new top—level node named InternetBeans that claims all the
InternetBeans dropped onto the main class. Beneath that node it has a two—level
structure: the top level consists of page producers and components not associated
with a page producer, while the bottom level contains the components attached to
each page producer.

When a page producer is selected and activated (by double—clicking or by
right—clicking and selecting Activate Designer), the Content Pane loads and
displays the HTML page attached to it (see Figure 21-2). The name of the
component appears in a bar at the top of the design surface, while the HTML
source is syntax highlighted below it. If no HTML file is attached to the page
producer the design surface displays the text “Please set the HTML file name for
this component” instead.

If a control component is selected and activated, its corresponding page
producer and attached HTML file are loaded (if not already present). Then the
HTML is searched for the identifier for this component and the section located is
brought into view and highlighted (see Figure 21-3). In this way, you can easily
find the position of a particular component within the page. If the component has
not yet been assigned to a page producer, the design surface displays the text
“Please set the page producer for this component”.

114 Part V: The Editors and Viewers

Figure 21-2. The InternetBeans designer extension.

@ JBuilder X - D:/Keith/OpenT ools/IBXDesigner/sic/Servlet] java =10] x|

File Edt Search Refactor Wiew Project Run Team ‘Wizards Tools Window Help

D %EES BEOS o~ 2l b Mw % %
My -H-%-afl - ¢ Q8L F -

[&] Project Erw

MR E B & Bo.. - - :
@ & B (Swing rSWing'Containers rDataExprESS' rdbSWing rMDre dhbSwing rdbSWing Maodels rlFﬁEJ‘netBeanS'E a|»
IBsDesigner . jpx I

{5 wood keith, opentools, ibxdesig t.; < [[ok] (@ — [EOm [wi— label [@ % [e= | [=7==] [_I=] (e ’

"5 openTool

»
(iR e

% dasses.opentools ixPageProducerl -

@ 1B%Designer.himl [<ntm1- jjname ixPageProduce

P8 Servletl.java | <head> ﬁ?tﬁ:ﬂ?du'e
: miFile

@ template.html ‘|<title>Test InternetBeans</title> R E(G I
: rootPath dikeithOpenT
:|<style type="text/caz">

tr.odd { color:blue }

‘l tr.ewven { color:red }
</ head>

O@ Structure

9 serviety
= | InternetBeans
o2 ixPasswordz

% ixListBioz1

o xPasswordl

<hody link="#0000££">« i—— background="leaves.gif"——x»

<hl aligm="center”>Internetbeans< /hl-

<img id = "imgl™ sro="xEx.gif”ie

<p aligm="center">When run data will £ill the page</p>
<table id="tahlel™ align="center” cellspacing="0" horder="
<trx<th-Full name< /the<thxFPhone< /Ahes< /tr>

ixHidden <tr class="odd"><td>John< /bds<tds1234</bd>< /b
H !XS_Danl <tr class="even"><td>Jill{/tde<td=5675< </t
!xLlnkl ; |<rtables
!angeEroducerZ | <form wethod="get” action=""»
IiP:E:P:EdEE:I J|<input name="inputd” type="text": Jinput name="checki” typ

xTextareal ‘|<textarea name="textareal”></textarea> Il
 esubrmitBUtton L <select name="zelecti"><option-i{option-E<option:C option:]¥|

:| Properties | Events
ixRadioButton1 : 2l [»] L P
ixPushButtonl || Source | Design | Bean | UML | Doc | History | DifF View

sziMBused [(NNANENENN 24 MEaoe [2]cq

Figure 21-3. Selecting an InternetBeans component.

@ JBuilder X - D:/Keith/OpenT ools/IBXDesigner/sic/Servlet] java =10] x|

File Edt Search Refactor Wiew Project Run Team ‘Wizards Tools Window Help

D %EES BEOS o~ 2l b Mw %
My -H-%-afl - ¢ Q8L F -

[%&] Praject érw

BE D @bo. -
IBxDesigner. jpx

1% wood keith. opentools. bxdesid 5 < [[ok] (@ — [EOm [wi— label [@ % [e= | [=7==] [_I=] (e ’

"5 openTool

»
(iR e

(Swing rSWing'Containers rDataExprESS' rdESWing rMDre dbSwing rdbSWin_g Modelz r'lr'demetEieanS'E Ak

% dasses.opentools ixPageProducerl Z

@ I5xDesigner.html | <ntma> : lname iTexthreal
24 Servletl.java <head: cols 1]

@ template. html <title>Test InternetBeans</titlex columnhlame

contralMame |textaread
dataSet
pageProducer |ixPageProduce
rows 1]

|<style type="text/css">

| tr.odd { color:blue }

7 3 tr.even { color:red }

: </style>

|| </head>

|<body link="#0000££"5<!—— background="leaves.gif"——>

<hl aligm="center”>Internetbeans< /hl-

<img id = "imgl™ sro="xEx.gif”ie

<p aligm="center">When run data will £ill the page</p>
<table id="tahlel”™ align="center” cellspacing="0" bhorder=
<trx<th-Full name< /the<thxFPhone< /Ahes< /tr>

<tr class="odd"><td>John< AAds<bdr L2534 Al fhr

<tr class="even"rLbdrJill<{/td-Lbd=56T78C b
:|«</tablex

<form nethod="get” action=""">

<input name="inputd"” type="text"> <input nawme="checki”™ typ

File: Browser

O, Structure
0? Servietl
= | InternetBeans
o2 ixPasswordz
ixListBox1
o xPasswordl
ixHidden1
ixSpanl
ixLink1
ixPageProducer3
ixPageProducerz
ixPageProducerl
.
, ixSubmitButton
ixRadioButton1

ixPushButtonl 1| Source | Design | Bean | UML | Doc | History | Diff Yiew

537.1 ME used

i _LProperties Everts

N #4MEale [«

Chapter 21: UI Designers 115

The starting point for the designer is a class that implements the Designer
interface — the InternetBeansDesigner class in this case (see Listing 21-1).
Create this new class and add the OpenTools initialization routine to register an
instance of the class with the DesignerManager class.

Listing 21-1. The InternetBeansDesigner class.

package wood.keith.opentools.ibxdesigner;

import java.util.Enumeration;

import javax.swing.event.TreeSelectionEvent;
import javax.swing.event.TreeSelectionListener;
import javax.swing.tree.DefaultTreeModel;
import javax.swing.tree.TreePath;

import com.borland.internetbeans.IxComponent;

import com.borland.internetbeans.PageProducer;

import com.borland.jbuilder.cmt.CmtComponents;

import com.borland.jbuilder.cmt.CmtComponentSource;
import com.borland.jbuilder.cmt.CmtModelNode;

import com.borland.jbuilder.cmt.CmtSubcomponent;
import com.borland.jbuilder.designer.Designer;

import com.borland.jbuilder.designer.DesignerManager;
import com.borland.jbuilder.designer.DesignerViewer;
import com.borland.primetime.PrimeTime;

/**
* A designer that manages InternetBeans components.
*
* @author Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 10 September 2001
74
public class InternetBeansDesigner
implements Designer, TreeSelectionListener {

private static final String VERSION = "1.0";

private InternetBeansModelNode rootNode = null;
private DesignerViewer _viewer = null;

/**
* Register the new designer for the InternetBeans.
*
* @param majorVersion the major version of the current OpenTools API
* @param minorVersion the minor version of the current OpenTools API
R4
public static void initOpenTool (byte majorVersion, byte minorVersion) {
if (majorVersion != PrimeTime.CURRENT MAJOR VERSION) {
return;
}
DesignerManager.registerDesigner (new InternetBeansDesigner()) ;
if (PrimeTime.isVerbose()) {
System.out.println ("Loaded InternetBeans Designer v" + VERSION) ;
System.out.println ("Written by Keith Wood (kbwood@iprimus.com.au)");

}

public InternetBeansDesigner () {
}

/**
* Update the viewer for this designer.
*
* @param source the source reference that corresponds
b to the components
* @param root the root of the subtree for this designer
* @param node the node being opened
* @param viewer the node viewer component
*

@return true 1if this node was handled, false otherwise

116 Part V: The Editors and Viewers

4
public boolean activate (CmtComponentSource source, CmtModelNode root,
CmtModelNode node, DesignerViewer viewer) {
_viewer = viewer;
InternetBeansViewer designer =
(InternetBeansViewer)viewer.getDesignView (this) ;
if (designer == null) {
// Create and register the UI for the designer
designer = new InternetBeansViewer () ;
viewer.setDesignView (this, designer);
}
// Then set up the UI to display the current node
Object object = root.getSubcomponent () .getLiveInstance () ;
designer.setPageProducer (
(object instanceof PageProducer ? (PageProducer)object : null),
root.getSubcomponent () .getName ()) ;
object = node.getSubcomponent () .getLiveInstance () ;
designer.setSelection (
object instanceof IxComponent ? (IxComponent)object : null);
return true;

—

*

Build a subtree for the components handled by this designer -
PageProducers and IxComponents from the InternetBeans collection.

@param source the source reference that corresponds
to the components
@param componentManager the manager of the components

R

74
public void annotate (CmtComponentSource source,
CmtComponents componentManager) {

// Obtain an array containing all subcomponents (bean instance
// variables) of the class being designed. The array will also
// contain "this".

CmtSubcomponent [] subcomponents = source.getSubcomponents () ;

// Create a root model node object for the subtree.
_rootNode = new InternetBeansModelNode (
this, null, null, getModelName()) ;

// Create a tree structure for holding the structure of our model.
// The root object of the tree is our root node.
DefaultTreeModel tree = new DefaultTreeModel (_rootNode) ;

// Now create the "model" itself.
InternetBeansModel model =
new InternetBeansModel (this, source, tree, getModelName ()) ;

// Create additional nodes, one for each PageProducer, and attach them
// to the tree, all as first level children of the root node.
for (int index = 0; index < subcomponents.length; index++) {
if (subcomponents[index].getLivelnstance ()
instanceof PageProducer) {
tree.insertNodeInto (new InternetBeansModelNode (
this, model, subcomponents[index]), rootNode, 0);

}

// Create additional nodes, one for each IxComponent,
// and attach them into the tree under their page producer
// (if available) .
for (int index = 0; index < subcomponents.length; index++) {
if (subcomponents[index].getLiveInstance () instanceof IxComponent) ({
PageProducer producer =
((IxComponent) subcomponents[index] .getLiveInstance()) .
getPageProducer () ;
InternetBeansModelNode parent = rootNode;
Enumeration children = rootNode.children();

Chapter 21: UI Designers 117

while (children.hasMoreElements()) {
InternetBeansModelNode child =
(InternetBeansModelNode) children.nextElement () ;

if (child.getSubcomponent () .getLivelInstance () == producer) {
parent = child;
break;

}

}
tree.insertNodeInto (new InternetBeansModelNode (
this, model, subcomponents[index]), parent, O0);

}

// Hand the model we made back to the source. This call,
// source.addModel (), is the primary action that annotate()
// performs back to the ComponentTree's structure.

// You can add zero or more models.

source.addModel (model, null) ;

—

/**
* Tidy up after finished with the designer.
*
* @param source the source reference that corresponds
b to the components
* @param viewer the node viewer component
/

public void close (CmtComponentSource source, DesignerViewer viewer) {
InternetBeansViewer designer =
(InternetBeansViewer)viewer.getDesignView (this) ;
if (designer != null) {
designer.setPageProducer (null, "");
}
viewer.getSelection () .removeTreeSelectionListener (this) ;
}

public String getModelName () { return "InternetBeans"; }
/**

* Create the UI for the designer if necessary.

*

* @param source the source reference that corresponds

b to the components

* @param viewer the node viewer component

74

public void open (CmtComponentSource source, DesignerViewer viewer) {
viewer.getSelection () .addTreeSelectionListener (this) ;
InternetBeansViewer designer =
(InternetBeansViewer)viewer.getDesignView (this) ;
if (designer == null) {
designer = new InternetBeansViewer () ;
viewer.setDesignView (this, designer);

}

/**
* Update the UI to show a particular PageProducer.
*
* @param producer the PageProducer to load
* @param name the component name to display
*/
public void setPageProducer (PageProducer producer, String name) {
InternetBeansViewer designer =
(InternetBeansViewer) viewer.getDesignView (this);
if (designer != null) {
designer.setPageProducer (producer, name);

/**

118

Part V: The Editors and Viewers

* Update the UI to select a particular IxComponent.
*
* @param object the IxComponent to select within the HTML file
/
public void setSelection (Object object) {
InternetBeansViewer designer =
(InternetBeansViewer) viewer.getDesignView (this);
if (designer != null) {
designer.setSelection (
object instanceof IxComponent ? (IxComponent)object : null);

}
/**

* Respond to selections within the structure tree and
* update the UI accordingly.

*

* @param evt the event for the tree selection

*/
public void valueChanged(TreeSelectionEvent evt) {
if (viewer == null) {
return;
}
try {
TreePath[] paths = evt.getPaths();
if (paths != null && paths.length >= 1) {

Object object = paths[0].getLastPathComponent () ;
if (object instanceof InternetBeansModelNode) {
object = ((InternetBeansModelNode)object) .getSubcomponent () ;
object = (object == null ? null
((CmtSubcomponent) object) .getLiveInstance ()) ;
setSelection (object) ;
}
}
}
catch (Exception ex) {
ex.printStackTrace () ;

}
}

Next implement the methods of the Designer interface. The activate method
creates a new Ul component for the designer if necessary, and asks that
component to prepare itself for display. If the current node is a page producer, its
name is displayed and its associated HTML file is loaded and shown. If the
current node is some other InternetBeans component, its location within its
producer’s file is highlighted.

The annotate method lets you add your model to the design tree in the
Structure Pane. In this case you create a new model sub—tree, with its root being
named InternetBeans. You then step through all of the sub—components within
the source file and add any that are page producers directly beneath the root. A
second pass through the sub—components lets you locate all the other
InternetBeans components and either attaches them to their page producer, or
directly to the root if they have no assigned producer. Finally, the new sub—tree is
added back into the main tree with the following:

source.addModel (model, null);

Closing the designer lets you release any resources that you have acquired,
and to remove any listeners that were added. For this example, you just clear out
the display and unsubscribe to changes in the Component Tree.

The name of the model is used as the caption for the root node of the new
sub—tree added by this designer. Note that this name is passed across to the

Chapter 21: UI Designers 119

model when it is created in the annotate method to ensure that the two are
identical.

Opening the designer gives you a chance to create whatever Ul component is
used to work with the selected components. Here you construct a new
InternetBeansViewer component, as well as registering for changes to the
Component Tree selection with the following:

viewer.getSelection() .addTreeSelectionListener (this);

The setPageProducer and setSelection methods pass these calls onto
the designer component, if it exists. This helps to de—couple the design since only
the main designer class needs to know about the designer UI component.

Changes to the user’s selection in the Component Tree are notified through
the valueChanged method. The currently selected item is passed onto the
viewer to allow it to update its display, but only if that item represents one of the
components managed by this designer.

InternetBeansModel and
InternetBeansModelNode Examples

A customized model manages the InternetBeans sub—tree within the Structure
Pane. The InternetBeansModel class implements CmtModel and maintains

the hierarchy internally via an embedded DefaultTreeModel (see Listing
21-2).

Listing 21-2. The InternetBeansModel class.

package wood.keith.opentools.ibxdesigner;

import javax.swing.tree.DefaultMutableTreeNode;
import javax.swing.tree.DefaultTreeModel;

import com.borland.internetbeans.IxComponent;
import com.borland.internetbeans.PageProducer;
import com.borland.jbuilder.cmt.CmtComponent;
import com.borland.jbuilder.cmt.CmtComponentSource;
import com.borland.jbuilder.cmt.CmtModel;

import com.borland.jbuilder.cmt.CmtModelNode;
import com.borland.jbuilder.cmt.CmtSubcomponent;

/**
* The model that contains all the InternetBeans components.
*
* @Qauthor Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 10 September 2001
R4
public class InternetBeansModel implements CmtModel ({

private InternetBeansDesigner designer;
private CmtComponentSource _source;
private DefaultTreeModel tree;

private String name;

/**
* Initialise the model that manages the subtree for this designer.
*
* @param designer the designer instance that created this model
* @param source the source reference that corresponds to this model
* @param tree the tree of nodes managed by this model
* @param name the name of the model
74

public InternetBeansModel (InternetBeansDesigner designer,

120

Part V: The Editors and Viewers

CmtComponentSource source, DefaultTreeModel tree, String name) {
_designer = designer;
_source = source;
_tree = tree;
_name = name;

}
public boolean isMultilInstance() { return false; }

/**

* Does this sub-tree claim and manage the subcomponent.
By claiming a subcomponent, you prevent it from appearing
under another sub-tree.

*
*
*
* @param subcomponent the embedded component to be checked
* @return true if this model claims this component, false otherwise
4
public boolean isSubcomponentOwned (CmtSubcomponent subcomponent) {
Object object = subcomponent.getLivelnstance () ;
return (object instanceof PageProducer | |
object instanceof IxComponent);

}
public DefaultTreeModel getGraph() { return tree; }
public CmtComponent getComponent () { return source; }

public CmtModelNode[] getChildren (CmtModelNode parent) {
CmtModelNode[] children = new CmtModelNode [parent.getChildCount ()];
for (int index = 0; index < parent.getChildCount (); index++) {
children[index] = (CmtModelNode)parent.getChildAt (index) ;
}
return children;

}
public CmtModelNode getRoot () { return (CmtModelNode) tree.getRoot(); }
public CmtModelNode getParent (CmtModelNode child) {

return (CmtModelNode)child.getParent () ;
}

/**
* Add a new node to this subtree.
*
* @param parent the node to add the new node to
* @param componentClassName the new class to instantiate
* @param aheadOf the node to add the new node before
* @param subcomponent a previously constructed wrapper for the
B4 new node, or null if not yet handled
* @return the new node
R4

public CmtModelNode add(CmtModelNode parent, String componentClassName,
CmtModelNode aheadOf, CmtSubcomponent subcomponent) {
CmtSubcomponent subcomp = source.addSubcomponent (
componentClassName, null, CmtSubcomponent.CLASS SCOPE) ;
InternetBeansModelNode node =
new InternetBeansModelNode (designer, this, subcomp);
_tree.insertNodelInto (node, (DefaultMutableTreeNode)parent,
(aheadOf == null ? 0 : parent.getIndex (aheadOf)));
_source.commit (false) ;
return node;

}

/**
* Move a node to a new location.
*
* @param node the node to relocate
* @param newParent the node to add the new node to
* @param aheadOf the node to add the new node before
*

@return the moved node

Chapter 21: UI Designers 121

/
public CmtModelNode move (CmtModelNode node, CmtModelNode newParent,
CmtModelNode aheadOf) {
_tree.insertNodeInto ((DefaultMutableTreeNode)node,
(DefaultMutableTreeNode) newParent,
(aheadOf == null ? -1 : newParent.getIndex (aheadOf)));
return node;

}
/**

* Delete a node from the tree.
*

* @param node the node to delete
/

public void remove (CmtModelNode node) {
__source.removeSubcomponent (node.getSubcomponent ()) ;
_tree.removeNodeFromParent ((DefaultMutableTreeNode) node) ;
_source.commit (false) ;

}
public String getName() { return name; }

public void close() {}
}

JBuilder uses the getGraph method to retrieve the tree model from this class so
that it can be integrated into the Component Tree.

The name of the model appears on its root node and is retrieved from the
getName method. Recall that this must be the same name as returned by the
getModelName method of the class that implements the Designer interface.

WARNING
If the two names are different, then no error appears but the designer Ul cannot
be activated through the designer implementation.

The isSubcomponentOwned method is quite important as this lets you claim
particular components embedded in the main class being constructed. If you
return true from here, the subcomponent does not appear under the default tree
(labeled Other) in the Structure Pane. If you return false, the subcomponent may
appear twice: once within your sub—tree and once under Other.

Most of the rest of the methods simply manipulate the embedded tree model,
allowing for the fact that the nodes in the tree are descended from
CmtModelNode. When a new component is added to the tree it must also be
added to the corresponding source file, hence a reference to that source file is
passed into the model’s constructor and retained for this use. A new instance of a
component node is created and added to the sub—tree. Finally, the changes to the
source file are saved through the following call:

source.commit (false) ;

Similarly, when a component is removed from the Component Tree, you must
also delete it from the source file.

Individual nodes are represented by the InternetBeansModelNode class,
which extends javax.swing.tree.DefaultMutableTreeNode and imple-
ments CmtMode1lNode (see Listing 21-3). The former lets it participate as part of
the tree structure built up in an InternetBeansModel object, while the latter
lets it interact with the components from the current source file.

122 Part V: The Editors and Viewers

Listing 21-3. The InternetBeansModelNode class.

package wood.keith.opentools.ibxdesigner;

import java.beans.PropertyChangeEvent;

import java.beans.PropertyChangeListener;
import java.util.Enumeration;

import javax.swing.tree.DefaultMutableTreeNode;
import javax.swing.tree.DefaultTreeModel;

import com.borland.internetbeans.IxComponent;
import com.borland.internetbeans.PageProducer;
import com.borland.jbuilder.cmt.CmtModel;

import com.borland.jbuilder.cmt.CmtModelNode;
import com.borland.jbuilder.cmt.CmtSubcomponent;

/**
* The tree node that encapsulates the InternetBeans component.
*
* @Qauthor Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 10 September 2001
*/
public class InternetBeansModelNode extends DefaultMutableTreeNode
implements CmtModelNode, PropertyChangelListener {

private InternetBeansDesigner designer;
private CmtModel model;

private CmtSubcomponent subcomponent;
private String name;

/**
* Initialise the node for this subcomponent.
*
* @param designer the designer instance that created this node
* @param model the model that manages this subtree
* @param subcomponent the component encapsulated by this node
* @param name the name of the node
R4

public InternetBeansModelNode (InternetBeansDesigner designer,
CmtModel model, CmtSubcomponent subcomponent, String name) {
_designer = designer;
~model = model;

__subcomponent = subcomponent;
_name = name;
if (subcomponent != null) ({

subcomponent .addPropertyChangelListener (this) ;

—

/**
* Initialise the node for this subcomponent.
*
* @param designer the designer instance that created this node
* @param model the model that manages this subtree
* @param subcomponent the component encapsulated by this node
R4

public InternetBeansModelNode (InternetBeansDesigner designer,
CmtModel model, CmtSubcomponent subcomponent) {
this (designer, model, subcomponent,
(subcomponent == null ? "null" : subcomponent.getName()));
}
public String getName() { return name; }
public void setName (String value) { name = value; }

public CmtModel getCmtModel () { return model; }

public CmtSubcomponent getSubcomponent () { return subcomponent; }

Chapter 21: UI Designers 123

public String getTag() { return null; }
public boolean isDesignable() { return true; }
/**

* Update the node, including its position, based on the component's

* property values.
*

* @param evt the triggering event

/
public void propertyChange (PropertyChangeEvent evt) {
if (evt.getPropertyName () .equals ("<Aname>")) {

// Change the displayed name
setName ((String)evt.getNewValue ()) ;
getCmtModel () .getGraph () .nodeChanged (this) ;
}
else if (evt.getPropertyName () .equals ("pageProducer")) {
// Reposition the component under its page producer
DefaultTreeModel tree = getCmtModel () .getGraph() ;
tree.removeNodeFromParent (this) ;
PageProducer producer =
((IxComponent) getSubcomponent () .getLiveInstance()) .
getPageProducer () ;
InternetBeansModelNode parent =
(InternetBeansModelNode) getCmtModel () .getRoot () ;
Enumeration children = parent.children() ;
while (children.hasMoreElements()) {
InternetBeansModelNode child =
(InternetBeansModelNode) children.nextElement () ;

if (child.getSubcomponent () .getLivelInstance () == producer) {
parent = child;
break;

}
}

tree.insertNodeInto (this, parent, 0);
// And update the designer viewer
_designer.setPageProducer (producer,

(producer == null ? getName () : parent.getName()));
_designer.setSelection (getSubcomponent () .getLiveInstance())
}
else if (evt.getPropertyName () .equals ("controlName") ||
evt.getPropertyName () .equals ("elementId")) {
// Highlight selected component
_designer.setSelection (getSubcomponent () .getLiveInstance())
}
}
public String toString() { return getName(); }

}

The isDesignable method returns true to indicate that there is a designer Ul
attached to this sub—tree that is invoked through the activate method of the
designer. Meanwhile the getName method provides the name to display for this
node within the tree.

To respond to changes in the property values of the underlying component,
each model node also implements the java.beans.PropertyChangeList-
ener interface and registers itself with the CMT subcomponent. As property
values are altered, the propertyChange method is called. Within this method,
you look for particular properties that affect the appearance of the component
within the Component Tree and update it accordingly.

The name of the component is the caption for the node within the tree. Since
this is a pseudo—property within JBuilder, it appears with the name “<Aname>".
You must also notify the tree that one of its nodes has changed so that it can
repaint itself correctly. Changes to the pageProducer property affect a

124 Part V: The Editors and Viewers

component’s parent within the tree. Hence the node is removed from its current
position and the tree is searched for the new producer. If found, the node is re—
inserted beneath it, otherwise the node is re—inserted at the top level, directly
beneath the InternetBeans node. Finally, if the controlName or elementId
property is modified, the associated viewer is informed (via the designer) so that
it can highlight the new position within the HTML file.

InternetBeansViewer Example

The last piece of the designer puzzle is the component that provides the user
interface for the designer. Instances of the InternetBeansViewer class (as
shown in Listing 21-4) supply that capability for this example and are created by
the activate or open methods of the InternetBeansDesigner

Listing 21-4. The InternetBeansViewer class.

package wood.keith.opentools.ibxdesigner;

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.Point;

import java.io.IOException;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.event.DocumentEvent;
import javax.swing.event.DocumentListener;

//import com.borland.jbuilder.editor.HTMLEditorKit; // JB9-
import com.borland.internetbeans.AbstractIxControl;

import com.borland.internetbeans.IxComponent;

import com.borland.internetbeans.PageProducer;

import com.borland.primetime.editor.EditorManager;

import com.borland.primetime.editor.EditorPane;

import com.borland.primetime.editor.TextEditorKit;

import com.borland.primetime.ide.Browser;

import com.borland.primetime.node.html.HtmlEditorKit,; // JBlO+
import com.borland.primetime.vfs.Buffer;

import com.borland.primetime.vfs.BufferListener;

import com.borland.primetime.vfs.BufferUpdater;

import com.borland.primetime.vfs.ReadOnlyException;

import com.borland.primetime.vfs.Url;

/**
* The UI for the InternetBeans designer.
* It displays the contents of the HTML file associated with a
* PageProducer and highlights the position of IxComponents
* within that file.
*
* @author Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 10 September 2001
R4

public class InternetBeansViewer extends JPanel
implements BufferListener, BufferUpdater, DocumentListener {

private BorderLayout borderLayout = new BorderLayout () ;
private JLabel namelLabel = new JLabel ();

private JScrollPane _viewScroll = new JScrollPane();
private EditorPane _viewPane = new EditorPane();

/* Specialised editor kit for display */

// private TextEditorKit _htmlEditorKit = // JB9-
// EditorManager.getEditorKit (HTMLEditorKit.class) ;
private TextEditorKit _htmlEditorKit = // JB10+

EditorManager.getEditorKit (HtmlEditorKit.class) ;

Chapter 21: UI Designers

private PageProducer producer = null;
private Buffer _buffer = null;

public InternetBeansViewer () {
try {
jbInit () ;
}
catch (Exception e) {
e.printStackTrace () ;
}
}

/**
* JBuilder UI initialisation.
*
* @throws Exception
/
private void jbInit () throws Exception {
this.setLayout (_borderLayout) ;
_namelLabel.setText ("Component") ;
_viewPane.setFont (EditorManager.getFont ()) ;
_viewPane.setEditorKit (_htmlEditorKit) ;
_viewPane.setText ("Internet Beans Viewer");
_viewPane.getDocument () .addDocumentListener (this) ;
_viewScroll.setPreferredSize (new Dimension (200, 200));
this.add(nameLabel, BorderLayout.NORTH) ;
this.add(viewScroll, BorderLayout.CENTER);
_viewScroll.getViewport () .add(_viewPane, null);
}
/ *
Display the HTML content of the PageProducer,
or an appropriate message if it is not available.

R

*/

public void setPageProducer (PageProducer producer, String name)

if (buffer != null) {
_buffer.removeBufferListener (this) ;
_buffer = null;

}

_viewPane.getDocument () .removeDocumentListener (this) ;
_producer = producer;

namelLabel.setText (" " + name);
:viewPane.setEditable(false);
if (producer == null) {

_viewPane.setText (

"Please set the page producer for this component");
_viewPane.getDocument () .addDocumentListener (this) ;
return;

}
try {
String filePath = null;
try {
filePath = producer.getHtmlPath () ;
}
catch (NullPointerException npe) {
filePath = null;
}
if (filePath == null || filePath.length() == 0) {
_viewPane.setText (

"Please set the HTML file name for this component");

}
else {

_buffer = Browser.getActiveBrowser () .getActiveProject () .

getNode (new Url ("file", filePath)) .getBuffer();
_buffer.addBufferListener (this) ;
_viewPane.setText (new String(buffer.getContent()));

Also tie into the VFS for changes to the HTML file buffer.

@param producer the PageProducer to get the content from
@param name the component name to display at the top

125

126 Part V: The Editors and Viewers

_viewPane.setEditable (true);
}
}
catch (IOException ioe) {
ice.printStackTrace () ;
_viewPane.setText ("Error during HTML load (" +

ioe.getClass () .getName () + ")\n" + ioce.getMessage());

}
_viewPane.getDocument () .addDocumentListener (this) ;

}

/**
* Mark the position of a component on the page.
*
* @param component the component to be highlighted
4

public void setSelection (IxComponent component) {
Point loc = new Point (0, 0);

if (component != null && component.getPageProducer () == producer)
boolean useName = (component instanceof AbstractIxControl) ;
String id = (useName *?

((AbstractIxControl) component) .getControlName ()
component.getElementId()) ;

String text = viewPane.getText();
String attrName = (useName ? "name" : "id");
if (!findText (text, attrName + "=\"" + id + "\"", loc))
if (!findText (text, attrName + " = \"" + id + "\"",
if (!findText (text, attrName + "='" + id + "'", loc))
if (!findText (text, attrName + " = '" + id + "'",
findText (text, attrName + "=" + id, loc);

}
}
_viewPane.setSelectionStart ((int)loc.getX());
_viewPane.setSelectionEnd ((int)loc.get¥Y());
_viewPane.repaint () ;
}
/ *

Find the supplied text and return its position.

@param text the text being searched
@param subtext the text to search for

* Ok % % Gk ok %

@return true 1if the subtext was found, false otherwise
74

private boolean findText (String text, String subtext, Point point)

int start = text.indexOf (subtext);
if (start == -1) {
point.setLocation (0, 0);
return false;
}
else {
point.setlLocation(start, start + subtext.length());
return true;

}
public PageProducer getPageProducer () { return producer;

/**
* If the buffer is changed by someone other than us,

* then reload the text.

*

* @param buffer the buffer being changed

* @param updater the lazy updater for this buffer
4

public void bufferChanged (Buffer buffer, BufferUpdater updater)

loc))

@param point the location of the subtext (updated for output)

}

{

Chapter 21: UI Designers 127

if (updater != this) ({

_viewPane.getDocument () .removeDocumentListener (this) ;
_viewPane.setText (new String (buffer.getContent()));
_viewPane.getDocument () .addDocumentListener (this) ;

}
}

public void bufferlLoaded(Buffer buffer) {
// Do nothing
}

public void bufferSaving (Buffer buffer) {
// Do nothing
}

public void bufferStateChanged (Buffer buffer, int oldState,
int newState) {
// Do nothing
}

/**
* Supply any changes to the file buffer as needed.

*

* @param buffer the buffer being updated
* @return the new content
R4
public byte[] getBufferContent (Buffer buffer) {
return viewPane.getText ().getBytes();
}

public void insertUpdate (DocumentEvent e) {
doModified() ;
}

public void removeUpdate (DocumentEvent e) {
doModified() ;
}

public void changedUpdate (DocumentEvent e) {
doModified() ;
}

/**
* Notify interested parties of changes to the file buffer.
R4
private void doModified() {
if (buffer != null) {
try {
_buffer.setContent (this) ;

}
catch (ReadOnlyException ex) ({

// Ignore
}

}

The viewer extends Jpanel and adds to it a label across its top, with an editor
pane filling the remainder. The label displays the name of the currently selected
page producer component, while the editor shows its HTML file. To have the
HTML displayed with syntax highlighting, you must assign the correct editor kit
to the editor. JBuilder provides an appropriate kit through its com.borland.
primetime.node.html.HtmlEditorKit class.

VERSION
The HTMLEditorKit class was in the com.borland.jbuilder.editor
package before JBuilder 10. Note that it was also named slightly differently.

128

Part V: The Editors and Viewers

Since you are displaying the contents of the HTML file for the page producer,
you should interact with it through JBuilder’s Virtual File System (VFS). Then, if
another copy of that file is opened, the two versions will remain synchronized via
the internal buffer, and will be stored as part of the project if everything is saved.

When a new page producer is activated, the setPageProducer method of
the viewer is called. If an existing buffer is being used, the viewer is removed
from its notification list. An attempt is then made to open the HTML file, with an
appropriate message being added to the editor if no file name is specified. The
VEFS is requested to open the file as a JBuilder node and return the buffer for it.
To this buffer is added the viewer as a listener for changes, while the editor is
loaded with the buffer’s current contents.

During construction, the viewer object is registered as a document listener
for changes to the editor pane, and the editor is made editable. Responding to
these change events lets you notify other users of the HTML file buffer of
updates. Each of the document listener’s methods calls the doModi £ied method
that checks for an associated buffer, and tells it that new content is available.

Rather than copy the new text for every keystroke, the viewer class also
implements the com.borland.primetime.vfs.BufferUpdater interface
(see Chapter 5), allowing the updating to be deferred until it is actually required,
such as switching to another view of the file. The single method of this interface,
getBufferContent, returns the new content as a byte array on demand. Other
interested parties are informed of changes through the setContent method of
the buffer. But rather than supplying the data directly, the instance of the updater
is sent instead. The other classes can then call back when they need to update
their own view.

Similarly, the com.borland.primetime.vfs.BufferListener inter-
face lets this class react to changes made to the buffer by other objects. In this
case, you are only interested in changes and so use the buf ferChanged method
to load the new text via the buffer passed in. You should first check that the
updater, also passed as a parameter, is not this class to avoid a cycle of updates.

When a new InternetBeans component is selected from the Component Tree,
the current page producer’s HTML is searched for the tag that corresponds to that
component. The viewer is notified through its setSelection method, which
checks that the component belongs to the current page producer and then
determines which property value to use for the search. Descendents of the
com.borland.internetbeans.AbstractIxControl class link to the tag
through their controlName property, while other InternetBeans components
link via their elementId property.

Several searches then follow based on differing spacing separating the
HTML attribute and its value, and the different use of quotes for the attributes.
The £indText method looks for the given text and updates a Point parameter
wherein the X value indicates its starting position and the Y value is the ending
position, as well as returning a boolean value indicating success. If the text is not
found the point is returned as (0, 0). Using the values from the point you set the
selection within the editor and hence highlight the section corresponding to the
original component.

If no page producer is assigned to a component yet, the initial call to the
setPageProducer method is passed null, resulting in the name of that
component being shown, along with a message that the page producer needs to
be set.

Chapter 21: UI Designers 129

Now all the parts of the new designer are ready. Compile the classes and
place them into a JAR file. Add the OpenTools manifest entry:

OpenTools-Designer: wood.keith.opentools.ibxdesigner.InternetBeansDesigner

Then copy the completed JAR file to the {JBuilder}/lib/ext directory and
restart JBuilder. Now, whenever you open the Design tab for a Java source file,
you see the InternetBeans category within the Component Tree in the Structure
Pane. If you add InternetBeans components to your class, they appear under this
node. You should set the HTML file name for your page producer, then select the
page producer for each other component and enter its tag name. The results are
shown in Figures 21-2 and 21-3.

By activating the new designer (through double—clicking on one of the
components in the tree, or by right—clicking and selecting Activate Designer from
the popup menu) you see the designer’s Ul and can quickly locate controls within
their producer’s page. Any updates made to the HTML are reflected in other
views of that file automatically.

Summary

To enhance the design process within JBuilder, you can add your own designers
to those already supplied. The designers manifest themselves when the Design
tab is selected for a Java source file and affect the IDE in two ways: they create
hierarchies of components within the Structure Pane, and they provide graphical
design surfaces for the components that they manage. Standard designers look
after visual components, menu construction, and database access.

The example designer discussed here deals with the InternetBeans
components, building a tree that shows which controls belong to which page
producers. As the latter are activated, their HTML template is displayed, while
controls bring up their page producer’s content before highlighting the section
that they affect. By linking into the VFS, your designer can immediately update
and respond to changes in other copies of the HTML template that may be open.

One of the sample projects that come with JBuilder also illustrates the Ul
designer interfaces.
{JBuilder}/samples/OpenToolsAPI/designer/Designer.jpx

A basic example that has three different designers included. The first shows

how to annotate the Component Tree by adding all the subcomponents under

a node called this. The second version creates a one—level sub—tree named

DesignerStep2, but only if the main class is a descendent of a known class.

The third version only adds those components derived from a known type,

placing them under a node called DesignerStep3.

None of the three versions prevents the subcomponents from appearing
under the node that they are normally associated with. All three also display
debugging—type messages to a popup window for the unused methods in the
Designer interface to help you follow the flow of the calls.

t Assistants

Another way that you can enhance the design environment is to provide support
for working with layout managers in a GUI project. Layout managers enable you
to design a user interface in a manner that is portable across platforms and screen
capabilities. A manager encapsulates a policy about where components are
placed and how they are repositioned and resized as their container is resized. By
nesting layout managers you can achieve just about any appearance and behavior
required.

Java comes with several layout managers already included, from the simple
FlowLayout, to BorderLayouts, and the more complex GridBagLayout.
Each has its own uses and idiosyncrasies. And if the existing ones are not
enough, you can always develop your own manager to provide your specific
requirements by implementing the LayoutManager or LayoutManager?2
interfaces (both in the java.awt package).

However, these layout managers do not provide enough information or
feedback to enable them to be used effectively in a graphical design environment.
Borland’s solution is to define the LayoutAssistant interface. Once
implemented and registered against the layout manager class, it acts as an
intermediary between JBuilder and the manager, supplying visual feedback for
common design operations.

Note that a layout does not become available for selection within the drop—
down list for the Layout property until a layout assistant is registered for it. This
is because JBuilder has no way of interacting with it until that assistant exists.

UNDOCUMENTED

Unfortunately, the entire layout assistant portion of the JBuilder OpenTools API is
undocumented. There are a couple of mentions of its existence in the OpenTools
documentation, but only to say that it can be done. And there is one, very basic,
example.

You can see the abilities supplied by the assistant by opening the Design tab for a
frame. Typically, when the mouse hovers over the container itself, the name of
that container and its layout manager are shown in the status bar. For components
within the layout, the status bar usually displays the component name and
whatever additional information the assistant deems appropriate, such as the
constraint name or coordinates.

When you add a new component to the frame, the status bar again provides

130

Chapter 22: Layout Assistants 131

details about where it would be placed within the layout were it to be dropped at
that point. If you drag an existing component, you typically receive feedback
both in the status bar, and within the frame itself via a selection box. For layouts
where it makes sense, the assistant can also provide feedback when resizing a
component.

Figure 22—1 shows the assistant for the GridBagLayout in use — with the
button component selected. Note that the assistant outlines the existing cells
within the grid, as well as providing handles for resizing the padding and insets
of a cell. The status panel displays the container’s name and layout manager.

Figure 22—1. Layout assistant for the GridBagLayout in action.

@JBuilder X - C:FJBuilderfOpenTools/Layoutsfsrefwood/keithfopentoolsflayoutsiTest java

File Edit Seatch Refactor Wiew Project Run Team ‘Wizards Tools Window Help Purchase

PN HREEE - DRSPS o~ Bl S M [Tk

e B b -l BB AT B
[l ;ri‘_iﬁiﬁﬂfderCDrnerLavout r_!jﬂi BorderCarnerl ayoutissistant r_gjﬂi Test |

DEED @en. -

B2 CenterLayout.java

l:i Test.java

"5 OpenTool

®% BorderCornerLayoutPrd ™|

Ch Centerlayouthssistant, |

@ rSwing I/Swing Containers rDataExpress rdwaing I/More dbSwving rdwaing M ._J_"

,9 < [ok] ®— [vi— labellj@ﬂ@@:[}

] [——
:jame |jButtond |~

i

& dasses.opentoals

|constrai... [[1,1,1,1,
{ buttonGr...| <nane>

html

O@ Structure

[Buttons|

I

ood. keith, opentools, layouts, Test

H this {CardLayaout)
#¥ cardLayourl

[iPanel2 (EridLayout) ‘|borderP... |True

[] jPanel3 (BorderLayout) CDntEﬂTATrUE |

=[] iPanels (GridBagLayout) | | ‘ldebuaGr... | =default=
#¥ gridBagLayoutt | digabled. T
i jLabels : ‘|disabled...]
= {TextFields ? donhieR (Falca X

[= |:| jPanele (CenterLayout)

|alignme..
|alignme..

” . |backgro... |00 212, 3¢
(|border jcustom |

Labels| TextFields

[jBUEROnS _ Properties -

1

[(INE

I |’|_ éLSource LDesign |\Bean Doc | History LDiFf Wigw |

|jPaneI5 (GridBagLayout)

LayoutAssistant Interface

The com.borland.jbuilder.designer.ui.LayoutAssistant interface
defines numerous methods for interacting with the associated layout manager.
These let you add functionality at appropriate times during the design process for
your layout. As with the other designers, the layout assistant interacts with the
components in the source file through the Component Modeling Tool (CMT),
which was described in Chapter 20.

To make your new layout assistant available, you must register it with the
com.borland.jbuilder.designer.ui.UIDesigner class, which should be
performed within the “Designer” OpenTools category. The first parameter is the
class of the layout assistant, followed by the full name of the actual layout that it
deals with, and a flag that is true to add the layout name to the drop—down list of
supported layouts in the Inspector or false to omit it.

132

Part V: The Editors and Viewers

UIDesigner.registerAssistant (BorderCornerLayoutAssistant.class,
"wood.keith.opentools.layouts.BorderCornerLayout", true);

NOTE
The UlDesigner class is one of JBuilder's standard designers (see Chapter
21). Apart from its Designer abilities and the registerAssistant method
mentioned above, it has two other static methods relating to layouts. Otherwise,
this class is not covered in this book.

getAssistedLayouts returns an array of the names of registered layouts
(those registered with true above). getAssistantClass takes one of these
names and returns the class of the assistant for that layout.

The ultimate purpose of your layout assistant is to update the constraints for the
selected components within the designer. Usually this is done with code like the
following, where node is a com.borland.jbuilder.designer.ui.Model-
Node object (which implements CmtModelNode):

node.getConstraints () .setValueSource (constraint) ;

A new instance of the layout assistant is created for each layout where it is used.

The methods to be implemented are listed below.

public void cleanupRemovedComponent (ModelNode contNode) ;
When a child component is deleted from the container, this method gives you
a chance to recompute the constraints for the remaining children, or to
perform whatever other processing is appropriate.
contNode is the CMT wrapper for the container that is using this layout
manager.

public void constraintEditorSelectionChanging (ModelNode
node) ;
Notification appears via this method that the user has changed the selection
of nodes within the Structure Pane while the constraint editor is open.
Normally this method just frees up any listeners it had registered and tidies
up the previous editor. The editConstraints method is then called to let
you initialize the editor for the new selection.
node is the CMT wrapper for the previously selected component.

public void editConstraints (TreePath[] treePaths, ModelNode
node) ;
This method is called when the user changes the nodes selected in the
Structure Pane while the constraints editor is open. First you receive a
constraintEditorSelectionChanging call to allow you to tidy up the
previous editor. In this method you then update the editor with the constraints
for the new selection.
treePaths is an array of path details for the selected components. Find
each component with the following:

CmtModelNode cmtmodelnode =
(CmtModelNode) treePaths[i] .getLastPathComponent () ;

node is the CMT wrapper for the container.

public String getConstraintsType () ;
Return the full path and class name of the type of the constraints used by this
layout manager, for example “java.lang.String”. If no constraints apply,
then return null. JBuilder calls this method when creating the constraint
values.

Chapter 22: Layout Assistants 133

public PropertyEditor getPropertyEditor();
Return an instance of a property editor for use with the constraints for this
layout manager, or null if no property editor is available. A single instance
can be created and reused via this function. It is a standard JavaBeans
property editor (java.beans.PropertyEditor).

public void layoutChanged (ModelNode contNode) ;
Use this method to respond to changes in the layout property of the container
from the manager handled by this assistant to another one. You can then
release whatever resources the assistant is holding. These resources were
probably acquired in the prepareChangelLayout method call.
contNode is the CMT wrapper around the container that is switching
layouts.

public void prepareActionGroup (ActionGroup actionGroup) ;
Add actions to the popup menu that displays when right—clicking over a
container using this layout. The actions appear at the bottom of the menu in
their own group.
actionGroup is the group to which your custom actions are added.

public void prepareAddComponent (ModelNode addNode, Point
point, Dimension dimension);
Add the specified component to its container using this layout with the
appropriate layout constraint based on the point and preferred dimensions
provided. This method is called when a new component is dragged from the
Component Palette and dropped onto the container. Feedback while
positioning the new component comes from the prepareaddStatus
method.

Set the constraints for the newly added node within this method with the

following:

addNode.getConstraints () .setValueSource (constraint) ;
addNode is the CMT wrapper around the new component being dropped. It
is already connected to the model hierarchy, so you can find its container’s
CMT node with the following:
ModelNode contNode = (ModelNode)addNode.getParent () ;
point is the location where the new component was dropped.
dimension is null if the new component was just dropped, or it is the
selected size if a dragged size was drawn.

public String prepareAddStatus (ModelNode curNode, ModelNode
contNode, Point point, Dimension dimension);
Provide feedback when a new component is being added to the container, but
before it is actually placed. Usually this returns a description of the location
within the layout that would be used if the component were dropped here,
and is shown in the status bar. The prepareAddComponent method does
the final placement.
curNode is the CMT wrapper for the component being added.

contNode is the CMT wrapper for the container that uses this layout
manager and will hold the new component.

point is the current location of the mouse within the container.

dimension is the size of the component to be added. It has a value if a size
is being dragged out, and is null otherwise.

134

Part V: The Editors and Viewers

public void prepareChangelLayout (ModelNode contNode) ;
When the layout manager for a container is changed to the one handled by
this assistant, this method informs you of that fact. It is called after a new
instance of the layout assistant is created, and lets you perform whatever
initialization your assistant requires.
This is an appropriate place to set any import statements needed by your
layout. You do this with the following code, which ties into the CMT:

contNode.getModel () .getComponentSource () .getSourceFile ().
addImport ("wood.keith.opentools.layouts.*");

The layoutChanged method lets you tidy up when the assistant is no longer
needed.

contNode is the CMT wrapper for the container that has had its layout
altered.

WARNING

The prepareChangelLayout method is only called when the layout for a
container is changed to this layout. It is not called if the container’s layout is
already assigned to this layout when the designer opens.

public void prepareCloneComponent (ModelNode node, Point
point);
Copying a component and adding it to the container invokes this method.
node is the CMT wrapper for the component being added.

point is the location within the container at which to add the new
component.

NOTE

| have not found the circumstances under which the prepareCloneComponent
and prepareCloneStatus methods are called. The descriptions here are
based on the method names and how the other methods function.

public String prepareCloneStatus (ModelNode curNode,
ModelNode contNode, Point point);
To show where a cloned component will be placed, you respond to this
method. The resulting string is displayed in the status bar.

curNode is the CMT wrapper for the component being added.

contNode is the CMT wrapper for the container that uses this layout
manager and will hold the new component.
point is the current location of the mouse within the container.

public String prepareMouseMoveStatus (ModelNode curNode,
ModelNode contNode, Point point);
As the mouse moves around the layout container, return a string to display in
the status bar that provides feedback about the component currently under the
mouse. Often this is the name of the component and its constraints within
this layout, or the name and layout class of the container itself if no child is
indicated.

curNode is the CMT wrapper for the component currently under the mouse.

This parameter is null if there is no component within the container at the
current mouse location.

Chapter 22: Layout Assistants 135

contNode is the CMT wrapper for the container that uses this layout
manager and holds the current component.
point is the current location of the mouse within the container.

public void prepareMoveComponent (ModelNode node, Point
pointl, Point point2);
Once a component has been dragged to a new position and dropped, this
method lets you update its properties based on the drop—point.
node is the CMT wrapper around the selected component.

pointl is the position of the mouse within the container when dropping the
moved component.
point2 is the position of the mouse within the component when starting the
drag operation.

public String prepareMoveStatus (ModelNode curNode,
ModelNode contNode, Point location, SelectBoxes
selectBoxes, Point offset):;
Provide feedback when dragging a component to a new position. The
returned value is shown in the status bar.
curNode is the CMT wrapper for the component currently under the mouse.

contNode is the CMT wrapper for the container that uses this layout
manager and holds the current component.

point is the current location of the mouse within the container.

selectBoxes is a reference for drawing a feedback rectangle. See the next
section for more details.

offset is the location of the mouse within the component when the drag
started.

public void prepareResizeComponent (ModelNode node,
SelectNib selectNib) ;
When a resizing operation has completed, this method lets you update the
component, based on the new settings from its resizing handle.

node is the CMT wrapper around the selected component.

selectNib encapsulates the resizing handle that is being dragged. See the
following section for more details on this class.

public String prepareResizeStatus (ModelNode node, Point
point, Dimension dimension);
Prepare feedback for display in the status bar when resizing a component.
node is the CMT wrapper around the selected component.
point is the current mouse position within the designer.
dimension is the new size of the selected component.

public void prepareSelectComponent (ModelNode node,
DesignView designView) ;
Whenever a component is selected within the designer, this method is
triggered. It also fires when the browser is reactivated after switching to
another application. It allows you to prepare for working with the chosen
component.
node is the CMT wrapper around the selected component. It is never the
container itself, and the method does not fire if no child component is
chosen.

136 Part V: The Editors and Viewers

designView is a reference to the designer itself. Through this object you

gain access to any resizing handles that apply within your layout. Use the

assureNibs method to generate the desired number of handles. Then set up

each one as necessary. See the section on the SelectNib class below.
public String resizeAction (Point point, DesignView

designView, SelectNib selectNib) ;

As a component is resized, this method lets you provide appropriate

feedback. Return a string value to display in the status bar, presumably to

show the new dimensions of the component.

point is the current location of the mouse within the designer.

designView is a reference to the designer itself.

selectNib encapsulates the resizing handle that is being dragged. See the
corresponding section for more details on this class.

DesignView Class

The com.borland.jbuilder.designer.ui.DesignView class represents
the design surface within the designer. It extends JRootPane, listens for changes
within the Component Tree, and adds the following methods, several of which
apply directly to layout assistants:
public static void adjustPositionForNib (Point nibPoint,
Dimension nibSize, Point point, int nibType);
When a nib is dragged, this method calculates its effect on the original sizing
rectangle, adjusting the data passed to it.
nibPoint is the location of the nib rectangle, usually taken from
selectNib.getRectangleLocation. It is updated by this method
nibSize is the size of the nib rectangle, usually taken from selectNib.
getRectangleDimension. It is updated by this method
point is the new location of the mouse.
nibType is the type of nib being dragged, as this affects how the rectangle
changes. Often it is selectNib. type.
public synchronized SelectNib[] assureNibs (int count);
Ensure that a certain number of resizing nib objects is available for use. See
the section below for more on nibs.
count is the number of nibs required.
public static Point componentAbsLocation (Component
component) ;
Find the location of a component relative to the designer as a whole.
component is the component to locate.
public DesignerViewer getDesignerViewer () ;
Retrieve the viewer hosting this design surface.
public Model getModel () ;
Obtain a reference to the model managed by this design surface.
public SelectBoxes getTempComponent () ;
Get the temporary boxes that you can use for feedback when the user
interacts with the layout assistant. See below for more detail.

Chapter 22: Layout Assistants 137

public static boolean isConstraintEditorShowing() ;
Determine whether the constraints dialog is visible.

public void setModel (Model model) ;
Change the model connected with this design surface.

model is the new model to use.

One field of possible interest within the class is:
public static ButtonDialog constraintDialog;
This is a reference to the dialog for the constraint editor. It may be null.

SelectBoxes Interface and SelectNib Class

To enhance the visual feedback provided by the layout assistant and to provide
additional functionality, you can use the com.borland.jbuilder.designer.
ui.opt.SelectBoxes interface and the com.borland.jbuilder.
designer.ui.SelectNib class.

The SelectBoxes interface allows you to show or hide one or more
selection rectangles in the designer. Typically it is used when moving a
component to a new location within the layout, or when resizing a component.
An instance of this interface is passed as a parameter to the prepare-
MoveStatus method of the LayoutAssistant interface. You can also retrieve
a reference to an instance through the Designview object passed to the
prepareSelectComponent and resizeAction methods using the following:

SelectBoxes selectBoxes = designView.getTempComponent () ;

Listed below are the methods of the SelectBoxes interface.
public boolean hide (int index);
Hide a particular selection box via this method.
index is the index of the box to hide.
public void hideAll () ;
Or make all the selection boxes invisible with this method.
public boolean isVisible();
Determine whether or not any of the selection boxes are currently being
shown with this method.

public void setContainer (Container container);
Establish the container that these selection boxes apply to.

container is the component that uses the layout manager accessible
through the current assistant.

public void show(int index, Point point, Dimension
dimension, int width);
Create and display a particular selection box with this method.

index is the index of the box being created (usually starting at zero).
point is the origin of the box in the coordinates of the designer.
dimension is the size of the box
width is the width of the line for the box in pixels.
Resizing handles for components are managed through the SelectNib class.

Instances of this class are passed to the assistant’s prepareResizeComponent
and resizeAction methods. Its methods are as follows:

138

Part V: The Editors and Viewers

public LayoutAssistant getLayoutAssistant();
Retrieve the reference to the assistant associated with this nib.

public Rectangle getNibBounds () ;
Obtain the position and size of the rectangle drawn out by the nib within the
coordinate system of its container.

public Dimension getRectangleDimension () ;
Retrieve the current dimensions of the rectangle drawn out by the resizing
nib, from the origin of the component.

public Point getRectanglelLocation();
Find the origin of the rectangle for the nib, based on the coordinates of the
designer as a whole.

public boolean isSelectable();
Returns true if this nib is functional, or false otherwise.

public String resizeAction (Point point, DesignView
designview) ;
For feedback during a resizing operation, this method returns a basic string
for display in the status bar.
point is the current location of the mouse within the designer.
designView is a reference to the designer itself.

public void setLayoutAssistant (LayoutAssistant
layoutassistant) ;
Associate the layout assistant with this nib.
layoutAssistant is the reference, typically set to this as the nib is set up
within the assistant.

public void setRectangleDimension (Dimension dimension) ;
Set the size of the base rectangle for this nib. Usually this is the size of the
attached component.
dimension is the size of the resizing rectangle.

public void setRectanglelocation (Point point);
The base rectangle for this nib starts at the point set through this method.
Typically this is the origin of the component associated with the nib.
point is the location of the origin for the resizing rectangle.

public void setSelectable (boolean flag);
Establish whether or not the handle allows selection and dragging. If it is
selectable, the cursor changes when over the handle, according to the type
described below.

flag is true to make the handle functional, or false to disable it.

Use the methods inherited from JComponent to set the position (in the designer
coordinate system) and dimensions of the nib: setBounds, setLocation, or
setSize. The default size is a five pixel square.

There are several public fields within the SelectNib class that also affect its
functionality:
public Point parentLocation;

Use this field to establish the position of the container within the designer.
public Object target;

Set this value to something appropriate for the type of handle being used,

typically the currently selected component. Once the nib has been selected it

Chapter 22: Layout Assistants 139

appears in calls to the LayoutAssistant methods, allowing you to retrieve
the object affected by the handle at that time.

public int type; _ Table 22—1. SelectNib types

The type of the nib

determines the cursor used Type | Cursor Purpf)?e

to indicate its functionality, =1 Not visible

as well as identifying how 0 ®y |Top left resizing nib

the sizing rectangle is . . .

adjusted gwhen dgragge d 1 A |Top right resizing nib

Table 22-1 shows the 2 # |Bottom left resizing nib

defined types — there do not

appear to be any constants 3 %, |Bottom right resizing nib

defined for these values. 4 @ Top vertical resizing nib
public int use;

Set this field for whatever 5 ¢ |Left horizontal resizing nib

ﬁ;i?ﬁsgi?ﬁée%i;ﬁfg 6 ¢ |Right horizontal resizing nib

the GridBagLayout assist- 7 @ Bottom vertical resizing nib

ant uses this value to o _

identify the different types 8 % Four-way resizing nib

of resizing handles it
exposes.

Resizing nibs are set up in the prepareSelectComponent method of the
assistant. You request a number of nibs from the designer via the designview
parameter. By default, four nibs are established in the corners of the component,
although they are initially disabled. Then for each nib you set its properties and
JBuilder displays it for you. Interactions with the nibs then flow through the
assistant’s prepareResizeComponent and resizeAction methods.

The following code snippet retrieves references to the basic four nibs, then
sets the bottom-right one to be active and to operate on the current component.
SelectNib[] nibs = designView.assureNibs (4);
nibs[3].setBackground (Color.black);
nibs[3].setlayoutAssistant (this);

nibs[3].setSelectable (true);
nibs[3].target = node;

Within the resizeAction method you use the SelectNib object to retrieve
the new position and dimensions of the component. For example, to draw an
outline representing the new settings, you can use the following:

Point nibPoint = selectNib.getRectangleLocation () ;

Dimension dimension = selectNib.getRectangleDimension() ;

// Update rectangle size based on nib type and location

DesignView.adjustPositionForNib (nibPoint, dimension, point,
selectNib.type) ;

// Draw the outline for the new size

designView.getTempComponent () .show (0, nibPoint, dimension, 2);

By using the selectBoxes interface and the SelectNib class, you can easily
enhance the appearance and functionality of your layout assistant.

140 Part V: The Editors and Viewers

BasicLayoutAssistant Class

The com.borland.jbuilder.designer.ui.BasiclLayoutAssistant
class provides a basic implementation of the LayoutAssistant interface and
can be used as the ancestor of your own customized layout assistant. This class
maintains a z—ordering of the components in the container, based upon their x
and y coordinates.

Unless otherwise described below, the methods required by the interface are
implemented as empty or return null. Several additional methods are available
for your subclass to use:
protected int calcBestZ (ModelNode node, ModelNode contNode,

Point point, Dimension dimension, Rectangle rectangle);

Calculate a z—ordering value for a node and return it.

node is the node to calculate the z—ordering for.

contNode is the container for the node.

point is the top—left position of the node, or 0, 0 if set to null.
dimension is the size of the node.

rectangle is updated to reflect the new ordering.

protected static boolean changeZ (ModelNode node, ModelNode
contNode, int newZ);

Alter the z—ordering for a node, returning true if it was changed , or false if it
was not.

node is the node to set the z—ordering for.

contNode is the container for the node.

new?Z is the new z—ordering.

protected static boolean frontBack (boolean toBack,
ModelNode contNode, ArrayList paths, DesignView
designView) ;

Modify the ordering of the nodes, returning true if any were changed, or false
if none were.
toBack is true to move the nodes to the back, or false to move them to the
front.
contNode is the container for the nodes.
paths is the list of TreePath entries within the container to move.
designView is a reference to the designer itself.

protected static CmtSubcomponent
getCustomizableSubcomponent (ArrayList paths);
Get the CMT subcomponent for a node that has a customizer attached, or
null if there is none.
paths is the list of paths to find the subcomponent for. However, if there is
not exactly one TreePath entry in the list it returns null.

protected static Object getKey (ModelNode node);
Returns an object to use as a key for ordering nodes. In fact it is a Point that
corresponds to the midpoint of the component.

node is the node to find the key for.

Chapter 22: Layout Assistants 141

protected static CmtSubcomponent
getSerializableSubcomponent (ArrayList paths);
Get the CMT subcomponent for a node that is serializable, or nul1 if there is
none.

paths is the list of paths to find the subcomponent for. However, if there is
not exactly one TreePath entry in the list it returns null.

protected static boolean lessThan (Object objectl, Object
object?2);
Compare two objects (which must be Points) and return true if the first one
is before the second one (down the form and then across).
objectl and object?2 are the points to compare.

public void prepareActionGroup (ActionGroup actionGroup) ;
Adds Move to First and Move to Last actions to the popup menu. You need to
override this if you do not want these menu items to appear.

public void prepareAddComponent (ModelNode addNode, Point
point, Dimension dimension);
Calculates the new z—position for the added component, based on its point
value.

public String prepareAddStatus (ModelNode curNode, ModelNode
contNode, Point point, Dimension dimension);
Returns the node’s name and z—position for display in the status bar.

public void prepareCloneComponent (ModelNode node, Point
point);
Calculates the new z—position for the cloned component, based on its point
value, for display in the status bar.

public abstract String prepareCloneStatus (ModelNode
curNode, ModelNode contNode, Point point);
Returns the node’s name and z—position for display in the status bar.

public String prepareMouseMoveStatus (ModelNode curNode,
ModelNode contNode, Point point);
Returns the name of the current component under the mouse, or the container
if no component, for display in the status bar.

public void prepareMoveComponent (ModelNode node, Point
pointl, Point point2);
Calculates the new z—position for the moved component, based on its
pointl value.

public String prepareMoveStatus (ModelNode curNode,

ModelNode contNode, Point location, SelectBoxes
selectBoxes, Point offset):;

Returns the node’s name and new z—position for display in the status bar.
Also draws an outline of the component at its new position.

public void prepareResizeComponent (ModelNode node,
SelectNib selectNib);
Calculates the new z—position for the resized component, based on its
selectNib value

public String prepareResizeStatus (ModelNode node, Point
point, Dimension dimension);
Returns the node’s name and z—position for display in the status bar.

142 Part V: The Editors and Viewers

public void prepareSelectComponent (ModelNode node,
DesignView designView) ;
Draws resizing handles at the four corners of the component.
protected void removeBoundsSetting (ModelNode node) ;
Set the bounds property for a node back to its default.
node is the node to update.
protected static void serialize (CmtSubcomponent
subcomponent) ;
Serialize the given subcomponent.
subcomponent is the CMT subcomponent to serialize.
protected static void sort (ArraylList objects, ArrayList
keys) ;
Sort a list of objects based on their keys.
objects is the list of objects to be sorted.
keys is a corresponding list of the object’s keys to use in determining their
order.
protected Arraylist sortedNodes (ModelNode node) ;
Sort the children of a node and return the ordered list.

node is the node whose children are sorted.

The class also defines several actions for operating on the layout and its

components.

public static UpdateAction ACTION Customizer;
Invokes a customizer for the selected component if one is available. This
action is added to the popup menu in the Structure Pane.

public static UpdateAction ACTION MoveToFirst;
Moves the current component to the beginning of the z—order. This action is
added to the popup menu by default.

public static UpdateAction ACTION MoveTolLast;
Moves the current component to the end of the z—order. This action is added
to the popup menu by default.

public static UpdateAction ACTION Serialize;
Serializes the selected component to a disk file. This action is added to the
popup menu in the Structure Pane.

BorderCornerLayoutAssistant Example

To demonstrate some of the abilities of a layout assistant, you can develop your
own. But first you need a layout manager to work with. In this case an enhanced
BorderLayout is used. As well as positions along each side of the container,
the BorderCornerLayout also has locations in each corner. Similar to the
BorderLayout, these are denoted by string constraints: NORTHEAST,
NORTHWEST, SOUTHEAST, and SOUTHWEST.

The setCornersContribute method takes a boolean value and sets an
internal flag with it. When set to true (the default), any components in the corner
positions are included in determining the preferred sizing for the borders. When
false, only the horizontal and vertical components are considered (unless these

Chapter 22: Layout Assistants 143

positions are empty). The standard hgap and vgap properties control spacing
between the components.

Components are sized to the maximum of their preferred dimensions around
the edges of the layout, with the center taking whatever is left. For example, the
maximum width of the northwest, west, and southwest components (assuming
getCornersContribute returns true) is used as the western width. Similarly,
the maximum height of the northwest, north, and northeast components is used as
the northern height.

An example of the functionality of the finished layout manager is shown in
Figure 22-2.

Figure 22—-2. The BorderCornerLayout positions.

& BorderCornerLayvout Demonstration
lf'«l_urth".l"-_.r'e_s_’t. MNorth NorthEast
West Center East
Southvwest South SouthEast

The next step is to start the layout assistant. Create a new class and derive it from
BasicLayoutAssistant. Add the OpenTools initialization routine and have it
register this class with the UIDesigner for the BorderCornerLayout layout
manager. Listing 22—1 shows the complete layout assistant class.

Listing 22—1. A layout assistant for BorderCornerLayout.

package wood.keith.opentools.layouts;

import java.awt.Color;

import java.awt.Container;

import java.awt.Dimension;

import java.awt.Point;

import java.beans.PropertyEditor;
import java.util.Enumeration;
import javax.swing.JComponent;

import com.borland.jbuilder.designer.ui.BasicLayoutAssistant;
import com.borland.jbuilder.designer.ui.DesignView;

import com.borland.jbuilder.designer.ui.ModelNode;

import com.borland.jbuilder.designer.ui.SelectNib;

import com.borland.jbuilder.designer.ui.UIDesigner;

import com.borland.jbuilder.designer.ui.opt.SelectBoxes;
import com.borland.primetime.PrimeTime;

import com.borland.primetime.actions.ActionGroup;

/**
* An assistant to help in the visual construction

144 Part V: The Editors and Viewers

* of a BorderCornerLayout.
*
* @author Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 30 August 2001
/
public class BorderCornerLayoutAssistant extends BasicLayoutAssistant {
private static final String VERSION = "1.0";
/**

* Register the assistant, which also makes the associated layout
available in the drop-down box in the designer.

@param majorVersion the major version of the current OpenTools API
@param minorVersion the minor version of the current OpenTools API
4
public static void initOpenTool (byte majorVersion, byte minorVersion) {
if (majorVersion != PrimeTime.CURRENT MAJOR VERSION) {
return;

}
UIDesigner.registerAssistant (BorderCornerLayoutAssistant.class,

"wood.keith.opentools.layouts.BorderCornerLayout", true);
if (PrimeTime.isVerbose()) {
System.out.println ("Loaded BorderCornerLayoutAssistant v" +
VERSION) ;
System.out.println ("Written by Keith Wood (kbwood@iprimus.com.au)");

}
private BorderCornerLayoutPropertyEditor propertyEditor = null;

public BorderCornerLayoutAssistant () {
}

/**
* Convert a point into one of the areas within this layout.

@param node the node for the container that uses this layout
@param point the point to convert into an area
@return the constraint name for this area

* % % %

R4
private String findArea (ModelNode node, Point point) {
Dimension size = node.getLiveComponent () .getSize () ;
if (point == null) {
// No specific drop point, then try to find a spare spot
HashMap used = new HashMap (9) ;
Enumeration children = node.children() ;
while (children.hasMoreElements()) {
Object child = children.nextElement () ;
if (child instanceof ModelNode) {
String area = ((ModelNode)child).
getConstraints () .getValueSource () ;
area = area.substring(area.indexOf ('."') + 1);
used.put (area, area);
}
}
for (int index = 0; index < BorderCornerLayout.AREAS.length;
index++) {
if (used.get (BorderCornerLayout.AREAS[index].toUpperCase()) ==
null) {
return BorderCornerLayout.AREAS[index];
}
}
// Default to centre
return BorderCornerLayout.CENTER;

}

int 1limitW = (int) (size.getWidth() / 5);
int limitH = (int) (size.getHeight() / 5);
int arealndex = getSection (point.getX (), size.getWidth (), limitwW) +

getSection (point.getY (), size.getHeight (), limitH) * 3;

Chapter 22: Layout Assistants

return BorderCornerLayout.AREAS[arealndex];
}

/**
* Retrieve the type of constraints used by this layout.
*
* @return the constraint type
4
public String getConstraintsType () {
return "java.lang.String";

}

/**
* Retrieve the class name of the layout for display.
*
* @param node the node for the container using the layout
* @return the layout's class name (without any path info)
/

private String getLayoutClassName (ModelNode node) {

String name = node.getSubcomponent () .getAsContainer () .getLayout () .

getClass () .getName () ;
int index = name.lastIndexOf('.');
return (index == -1 ? name : name.substring(index + 1));

}

/**

* Retrieve the property editor for this layout's constraints.
*

* @return the appropriate property editor

74
public PropertyEditor getPropertyEditor () {
if (propertyEditor == null) ({

propertyEditor = new BorderCornerLayoutPropertyEditor();
}
return propertyEditor;

—

/**
* Convert a positional value into a section number (0..2).
*
* @param pos the position within the range
* @param max the maximum position (minimum 1is zero)
* @param 1limit the inset for the two edge sections
* @return 0 if in the left inset, 1 if in the middle,
* 2 if in the right inset
74
private int getSection (double pos, double max, int limit) {
return (pos < limit ? 0 : (pos > max - limit 2?2 2 : 1));
}
/**
* Add items to the popup menu. Nothing to add.
74

public void prepareActionGroup (ActionGroup actionGroup) {
}

/**

*

Add a component to the container using this layout (including

* drag-and-drop) with the appropriate layout constraint.

* If an existing component is at the new position,

* swap it to the old position.

*

* @param addNode the node for the component being added

* @param point the point at which to add the component

* @param dimension null if the component was just dropped, or

& the dragged size of the component being added
4

public void prepareAddComponent (ModelNode addNode, Point point,
Dimension dimension) {
ModelNode contNode = (ModelNode)addNode.getParent () ;

145

146

Part V: The Editors and Viewers

// Get area dropped into
String area =
"BorderCornerLayout." + findArea (contNode, point).toUpperCase();
// Locate any existing occupant
ModelNode occupant = null;
Enumeration children = contNode.children() ;
while (children.hasMoreElements()) {
Object child = children.nextElement () ;
if (child instanceof ModelNode) {
ModelNode childNode = (ModelNode)child;
if (childNode.getConstraints () .getValueSource () .equals (area))
occupant = childNode;
break;

}
}
// Set the new area for the dropped component
String oldArea = addNode.getConstraints () .getValueSource () ;
addNode.getConstraints () .setValueSource (area) ;
if (occupant != null) {
// And swap an existing occupant to its original position
occupant.getConstraints () .setValueSource (oldArea) ;

—

/**
* Provide feedback to the user when about to add a component.
* Show the container name and its prospective constraint.
*
* @param addNode the node for the component being added
* @param contNode the node for the container using the layout
* @param point the point at which to add the component
* @param dimension null if the component was just dropped, or
b the dragged size of the component being added
* @return the feedback string
74

{

public String prepareAddStatus (ModelNode addNode, ModelNode contNode,

Point point, Dimension dimension) {
return contNode.getName () + " (" + getLayoutClassName (contNode) +
"): " + findArea (contNode, point);
}

/**
* Initialisation when setting this layout as the manager to use.
*
* @param contNode the node having its layout set
R4

public void prepareChangeLayout (ModelNode contNode) {
contNode.getModel () .getComponentSource () .getSourceFile () .

addImport ("wood.keith.opentools.layouts.*") ;

super.prepareChangelLayout (contNode) ;

—

*

Provide feedback to the user when hovering over components.
Show the current component name and its constraint, or,
if no component, the container name and prospective constraint.

@param curNode the node for the component the mouse is over
@param contNode the node for the container using the layout
@param point the point at which the mouse is located
@return the feedback string

B S

74
public String prepareMouseMoveStatus (ModelNode curNode,
ModelNode contNode, Point point) {
return (curNode != null ? curNode.getName () + ": " +
curNode.getConstraints () .getValueText ()
contNode.getName () + " (" + getLayoutClassName (contNode) + ")");

Chapter 22: Layout Assistants

/**
* Provide feedback to the user when dragging a component.
* Show the container name and its prospective constraint.
* Also display a rectangle to show the corresponding location.
*
* @param curNode the node for the component being moved
* @param contNode the node for the container using the layout
* @param location the point to which to move the component
* @param selectBoxes reference for drawing the feedback rectangle
* @param offset the point within the component where
* the mouse clicked

* @return the feedback string - displayed on the status line
/
public String prepareMoveStatus (ModelNode curNode,
ModelNode contNode, Point location, SelectBoxes selectBoxes,
Point offset) {

Container container = contNode.getSubcomponent () .getAsContainer () ;

Dimension size = container.getSize();

Point absLocation = DesignView.componentAbsLocation (container);
int 1limitW = (int) (size.getWidth() / 5);
(

int limitH = (int) (size.getHeight() / 5);

int arealndex =
getSection (location.getX (), size.getWidth (), limitwW) +
getSection (location.getY (), size.getHeight (), limitH) * 3;

// Display a positioning outline
Point point =

new Point ((int)absLocation.getX () + (areaIndex % 3 == 0 2 0
(arealndex % == 1 ? limitW : (int)size.getWidth() - limitW)),
(int)absLocation.getY () + ((int) (arealndex / 3) == 0 2 0
((int) (areaIndex / 3) == 1 ? limitH
(int) size.getHeight () - limitH)));
Dimension showSize = new Dimension((arealIndex $ 3 == 1 ?
(int) size.getWidth() - 2 * limitW : limitW),
((int) (areaIndex / 3) == 1 ?
(int)size.getHeight() - 2 * limitH : limitH));

selectBoxes.show (0, point, showSize, 2);
// Return the feedback value for the status bar
return contNode.getName () + " (" + getLayoutClassName (contNode)
"): " + BorderCornerLayout.AREAS[arealndex];
}

/**

* Resize the component's preferred dimensions.

*

* @param node the node for the component selected

* @param selectNib the resizing handle being dragged

R4
public void prepareResizeComponent (ModelNode node,

SelectNib selectNib) {

JComponent component = (JComponent)node.getLiveComponent () ;

component.setPreferredSize (selectNib.getRectangleDimension ()) ;
}

*

/

@param node the node for the component being resized
@param point the location of the mouse

@param dimension the new dimensions of the component
@return the feedback string - displayed on the status line

* Ok X X Gk % %

74
public String prepareResizeStatus (ModelNode node, Point point,
Dimension dimension) {
return node.getName () + ": " +
(int) dimension.getWidth () + "x" + (int)dimension.getHeight () ;
}

/**
* Set up when user selects a component.
* Provide a resizing handle if JComponent selected.

b

Provide feedback for resizing a component's preferred dimensions.

147

148

Part V: The Editors and Viewers

*

* @param node the node for the component selected
* @param designView the designer
/

public void prepareSelectComponent (ModelNode node,

DesignView designView) ({

super.prepareSelectComponent (node, designView) ;

if (node.getLiveComponent () instanceof JComponent) {
// Establish a resizing handle for JComponents -
// #3 is bottom right
SelectNib[] nibs = designView.assureNibs (4) ;
nibs[3].setBackground (Color.black) ;
nibs[3].setlLayoutAssistant (this) ;
nibs[3].setSelectable (true) ;
nibs[3].target = node;

—

Provide feedback for resizing a component's preferred dimensions.
Also draw an outline showing the new size.

@param point the current location of the mouse
@param designView the designer

@param selectNib the resizing handle being dragged
@return the feedback string - displayed on the status line

Ok % % Gk ok % %

74
public String resizeAction(Point point, DesignView designView,

SelectNib selectNib) {

Point nibPoint = selectNib.getRectangleLocation () ;

Dimension dimension = selectNib.getRectangleDimension () ;

// Update rectangle size based on nib type and location

DesignView.adjustPositionForNib (nibPoint, dimension, point,
selectNib. type) ;

// Draw the outline for the new size

designView.getTempComponent () .show (0, nibPoint, dimension, 2);
return prepareResizeStatus ((ModelNode) selectNib.target, point,
dimension) ;

}

The assistant divides up the container area in a standardized manner, allocating
one fifth of the height and width to the border regions, and leaving the remainder
to the center. This overcomes complex calculations for each contained
component, as well as working when there are no components along a particular
edge. The findArea method converts a point within the container into one of
the constraint values based on the divisions above. Retrieve the size of the
container through its CMT node as shown below:

Dimension size = node.getLiveComponent () .getSize () ;

The constraints for this layout come from a limited list of string values. Hence
the getConstraintsType routine returns “java.lang.String” as the type
of the constraints used. To support this within the designer, the layout assistant
returns an instance of a property editor from the getPropertyEditor method.
Property editors follow the JavaBeans specification and the java.beans.
PropertyEditor interface. In this case, the editor simply returns the list of
possible values, as well as the fully qualified constant equivalent to each of these
values. The latter are used to generate the code snippet that sets the value for the
constraint within the source file.

Used internally, the getLayoutClassName method retrieves the name of
the layout manager class for the specified component (the container), while the

Chapter 22: Layout Assistants 149

getSection method converts a position on the screen into a value indicating
which portion of the layout it belongs to.

This assistant adds no entries to the popup menu in the designer, however its
ancestor class does add items. Thus the prepareActionGroup method must be
defined and left empty to avoid this behavior.

When a new component is added to the container or an existing component is
dragged to a new position and dropped, JBuilder calls the prepareAddComp-
onent method. This first determines the constraint for the new addition before
checking whether or not that position is already occupied. If there is an occupant,
its location is set to that of the new one before its move, swapping their positions.
The constraint values are set via the corresponding CMT nodes:

addNode.getConstraints () .setValueSource (area) ;

After a component is selected from the Palette, the layout assistant provides
feedback through the prepareaAddstatus method as the mouse indicates the
position to place it. Here you display the name of the container and its layout
manager class, along with the constraint for the current point under the mouse.
When moving the mouse around without having selected a component, the
status bar shows the current component and its constraint via the prepare-
MouseMovesStatus method. If the mouse is not over a contained component, the
name of the container itself is displayed, along with the name of its layout class.
If you drag an existing component within its container, JBuilder invokes the
prepareMoveStatus method. Return the text to display in the Status Pane — in
this case the container name, the name of its layout class, and the constraint for
the current mouse position. Retrieve a reference to the container itself with the
following code, along with its absolute position within the designer window:
Container container = contNode.getSubcomponent () .getAsContainer();
Point absLocation = DesignView.componentAbsLocation (container) ;
In addition, you can draw a selection box on the container to indicate graphically
the new location. Use the SelectBoxes reference passed into the routine to
display this box. Its show method takes an integer index value, the origin point of
the rectangle (with respect to the designer itself) and its size, and the width of the
line used.

selectBoxes.show (0, point, showSize, 2);

Although this layout ultimately controls the sizes of the contained components, it
does take into account the preferred sizes of those around the edges. Thus, the
prepareResizeComponent method responds to changes in a suitable resizing
nib to alter the component’s preferred dimensions.

component.setPreferredSize (selectNib.getRectangleDimension()) ;

Meanwhile, the prepareResizeStatus method provides suitable status bar
feedback for the resizing nib as it is dragged. This nib is established in the
prepareSelectComponent method by modifying one of the standard nibs.
Further feedback comes from the resizeAction method in the form of an
outline showing the new size. You must adjust the rectangle for the outline based
on the current position of the mouse and the type of nib being dragged. This is
achieved via the following call:

DesignView.adjustPositionForNib (
nibPoint, dimension, point, selectNib.type);

150

Figure

Part V: The Editors and Viewers

As before, you need to compile the classes for the layout itself, the layout
assistant, and its property editor, and place them into a JAR file. The manifest
entry for this assistant should read:

OpenTools-Designer:
wood.keith.opentools.layouts.BorderCornerLayoutAssistant

Place the completed JAR file in the {JBuilder}/lib/ext directory and restart

JBuilder. The BorderCornerLayout is now available for selection as a layout

property. Once in use, the assistant comes into play to guide you through its

layout policy as shown in Figure 22-3.

22-3. The BorderCornerlLayoutAssistant in action.

@JBuilder X - C:FJBuilderfOpenTools/Layoutsfsrefwood/keithfopentoolsflayoutsiTest java

File Edit

Search Refactor Wiew Project Run Team Wizards Tools Window Help Purchase

N-%EEE- DRI &~ B X Ml [~]% % G
Do HP K- ¢SGR AFE R

(] Project rﬁ& BorderCornerLayout rﬂ{i BorderCornetLayout Assistant rﬂlﬁi Test |

BEEE @l -

rSwing I/Swing Containers I/DataExpress rdbSWing rMDre dbSwwing rdbSWing M 4' 3

{i Abstractlayout, java

{i BorderCornerLavout. java
Cﬁ BorderCornerLavout Assist]
Cﬁ, BorderCornerLayoutPrope|
{i ZenterLayaout.java

{i CenterLayoutAssistant, ja

Cﬁ, Test.java

’:'5%? < (oK @— (o vi— Iabel:@%mlﬁm'

jButtonls

1]

O@ Structure

U
a fccess

|:| jPaneld (Borderlayout) al:
|:| jPanell (Flowlayout)
[jPamels (xvLayout) : jButton10) |iTextFieldd jLabel3
[jPanel7 (BorderCornerLayout) :

ﬁ borderCornerLayoutl

[=] jButkonln

[=]1 jButkon?

— jTextFieldd

el jLabeld

[=] jButkonlé

jBukton? : -
Properties -

|

;LSource LDesign LBean Doc | Hiskory LDiFF Wig |

l

|jPaneI? (BorderCornerLayout): Center

Summary

Although layout managers are great at managing the placement and sizing of
components within a GUI application, they are not so friendly to graphical
development environments. JBuilder comes to the rescue with the Layout-
Assistant interface and BasicLayoutAssistant abstract class.

These provide feedback during placement of components within the
container, and during repositioning and resizing operations. Unfortunately, the
layout assistant API is undocumented, making it difficult to use to its full effect.
This chapter should provide enough detail to overcome that limitation and
includes an example to get you on your way.

A single sample of the use of a layout assistant comes with JBuilder, as
shown below.

Chapter 22: Layout Assistants 151

{JBuilder}/samples/OpenToolsAPI/LayoutAssistant/
LayoutAssistant.jpx

A very basic assistant that provides some feedback for the RowLayout
manager. This layout extends GridLayout, but restricts it to a single row
with columns of equal width. The assistant, as well as adding the layout to
the drop—down list, displays the new position as a continually movable
selection box, rather than the jumping box of the GridLayout assistant.

152 Part V: The Editors and Viewers

JBuilder’s purpose as a Java IDE is to make things easier for the developer. Its
many enhancements within the editor environment allow you to attach keystroke
combinations to actions — either those that are built-in or those that you create
yourself. You can call up Codelnsight features, or have them pop up
automatically, to remind you of what methods and fields are available for an
object, and to insert references to them to reduce typing. The designer lets you
drag-and-drop components when constructing your user interface as well as some
non-visual aspects of your code.

Another important area where JBuilder assists you in the development
process is through the use of wizards. Wizards are usually presented as a series of
pages within a dialog box that lead you through some, often complex, procedure.
They are also used for simple tasks such as creating a new class. Although a
similar result could be achieved by calling on a code template, a wizard is
interactive, allowing you to alter the generated code through data entered in the
dialog.

More complex activities can be automated and simplified through wizards so
that you do not have to remember all the steps necessary to reach your goal. Thus
you end up with more complete and correct code every time.

To assist you in working with Java files (often the input or output of a
wizard), JBuilder also provides the Java Object Toolkit (JOT). This set of
interfaces and classes let you easily interact with Java code, in both source and
compiled formats. You can use it to parse existing files to retrieve information,
and to generate new Java code from scratch. It also enables you to make very
precise modifications to existing code.

Of course, the framework that supports wizards in JBuilder is available for
your use through the OpenTools API. Chapter 23 describes the wizard
framework, while Chapter 24 discusses JOT, the object model for Java code.

153

154 Part VI: The Wizard Framework

bject Toolkit

The Java Object Toolkit (JOT) is a collection of interfaces and classes that allows
you to easily interact with Java code, in both source and compiled formats. You
can use it to parse existing files to retrieve information, and to generate new Java
code from scratch. It also enables you to make very precise modifications to
existing code.

Several parts of JBuilder make use of JOT. The Component Modeling Tool
(CMT) discussed in Chapter 20 relies on JOT to locate the components and their
properties that it deals with. Numerous wizards use JOT to extract information
from existing Java code and process it (such as the Resource Strings wizard), to
alter existing code (like the Implement Interface wizard), or to generate new Java
code (most items in the Object Gallery).

The Tag Library Descriptor wizard presented in Chapter 23 draws on JOT to
examine the Java contents of a project to extract the information that it needs to
operate. It starts by obtaining the package manager (JotPackages) from the
project, and then accesses each Java file in the project (JotFile) from which it
obtains the list of classes (JotClass) declared there. Each class is examined to
see whether it implements one of the JSP tag interfaces. If so, the wizard
retrieves further details about that class. At the end it frees up any resources
acquired by JOT during this process.

JotPackages jpackages = project.getJotPackages();

JotFile jfile = jpackages.getFile(fileNode.getUrl());

JotClass[] jclasses = jfile.getClasses();

for (int index = 0; index < jclasses.length; index++) {
// Process this class - jclasses[index]

}
jpackages.release (jfile);

Within each class, the wizard reads the comment (JotComment) describing it
and then scans through each of its methods (JotMethod) looking for setters that
may indicate attributes of the tag. All the information is displayed in the wizard
to allow the user to review and alter or enhance it before generating the TLD file.

JotComment jcomment =
((JotSourceFile)jfile) .getComment ((JotClassSource)jclass, BEFORE) ;
JotMethod[] jmethods = jclass.getMethods () ;
for (int index = 0; index < jmethods.length; index++) {
if (jmethods[index].getName () .substring (0, 3).equals("set")) {
// Process this method
}
}

155

Figure 24-1. JOT class hierarchy.

JotType
JotConstructor JotPackages f
? - JotArrayClass
JotParameter JotConstructorSource JotMethod JotFile JotClass [—— JotPrimitiveClass
JotParameterDeclaration JotMethodSource JotSourceFile thCIassSource
JotinnerClass
JotDocTag ?
Jotimport P JotMarker [«— JotCommentable JotAnonymousClass
JotPackage 0 Ta e ott-omme y
JotUnaryExpression JotComment JotCodeBlock
JotOperation JotExpression —®| JotSourceElement 4—— JotStatement JotInitBlock
JotBinaryExpression JotBreak Jotlf JotVariable
f JotCase JotLabelled f
JotCatch JotReturn
JotAssignment JotCondition JotContinue JotSwitch JotVariableDeclaration JotField
Jotlnitializer JotDefault ~ JotSynchronized
JotMethodCall JotD_o JotThrow f
JotNew JotFinally JotTry JotFieldDeclaration
JotSubscript JotFor JotWhile
JotTypeOp JotExpressionStatement

Chapter 24: Java Object Toolkit 157

The hierarchy of interfaces and classes that make up JOT is shown in Figure
24-1. Interfaces are shown in italics, while classes are in normal type. Inheritance
is indicated by the arrows (since most of the items are interfaces, multiple
inheritance is possible). The items that are shaded are those that are described in
detail in this chapter.

NOTE

The JOT interfaces and classes belong to the com.borland. jbuilder branch
of the package structure since they are directly related to Java code. This follows
the split between the PrimeTime packages (the generic IDE framework) and
JBuilder (the Java-specific IDE).

JotPackages Interface

When using JOT you usually start out with the package manager as encapsulated
in the com.borland.jbuilder.jot.JotPackages interface. From it you
have access to the Java files and classes within the project. You retrieve an
instance of this interface from your current (JBuilder) project:

JotPackages jpkgs = project.getJotPackages();

The methods of this interface are:
public boolean checkReread(JotSourceFile file);
Determine whether some other process has changed the source file, and force
a reload if it has. Any object references that you had on the original file are
then invalid.
file is the source file to verify.
public void commit (JotSourceFile file);
Write out any changes to the file to its underlying stream.
file is the modified file to save.
public void commitAs (JotSourceFile file, String fileName) ;
public void commitTo (JotSourceFile file, String fileName) ;
Send the changes to a file to a different destination.
file is the modified file to save.
fileName is the name of the new file to write to.

WARNING
The commitAs and commitTo methods are deprecated in all JBuilder versions.

public JotClass getClass(String className, int needs);
public JotClass getClass (JotSourceFile importContext,
String className, int needs);
Retrieve JOT class information for a given class, or null if it cannot be
found.

importContext is the file to search.
className is the full name of the class required.

needs is one of the constants below to define whether you require source or
class files.

public String getEncoding () ;
Get the character encoding used for the files.

158

Part VI: The Wizard Framework

public JotFile getFile (Url url);
Given a Url, find the JOT file for it. Use getSourceFile to obtain an
updateable version.
url is the Url to read.
public Iterator getFiles (String packageName, int needs);
public ArraylList getFilesArray(String packageName, int
needs) ;
Obtain an iterator for or a list of the files (as Ur1s) in a package.
packageName is the full name of the package to scan. Either dots or the file
separator character may separate the name parts.
needs is one of the constants below to define whether you require source or
class files.
public String getPackage (JotSourceFile importContext,
String className, int needs);
Find the package name for a given class.

importContext is the file to search.
className is the full name of the class required.
needs is one of the constants below to define whether you require source or
class files.

public Iterator getPackages (int needs);

public ArraylList getPackagesArray (int needs);
Obtain an iterator for or a list of the package names (as Strings) for this
project.
needs is one of the constants below to define whether you require source or
class files.

public JotSourceFile getSourceFile (Url url);
Given a Url, find the JOT source file for it. Use getFile to obtain a read-
only version.
url is the Url to read.

public String getSourceVersion();
Returns the source version (minimum JDK perhaps?) to use when parsing the
code. Currently returns “1.2”.

public Url getUrl (String className, int needs);
Retrieve the ur1 for the file that contains a class.
className is the full name of the class required.

needs is one of the constants below to define whether you require source or
class files.

public Class loadClass(String className) throws
ClassNotFoundException;
Get standard class information for a class. An exception is thrown if the class
cannot be found.
className is the full name of the class required.

public void release(JotFile file);
Free up any resources allocated to a file, and flush its buffers.

file is the file to free up.

Chapter 24: Java Object Toolkit 159

public void releaseAll();
Release all resources and flush buffers for all the files attached to this
package manager.

public void shutdown () ;
Close down the package manager and clear all caches.

The following constants are defined in this interface:

public static final int NEED ANY;

public static final int NEED CLASS;

public static final int NEED SOURCE;
Use these in various methods above to define what sort of access you require
to the Java code: anything, only class files, or only source files.

JotFile Interface

From the package manager for JOT, you can access the files that make up a
package. Each one is represented by an instance of the com.borland.
jbuilder.jot.JotFile interface and may be a Java source or class file. In
the latter case, you have read-only access to the file.

Retrieve the file reference by using the following code:

JotFile jfile = jpackages.getFile (url);

Its methods are:
public JotClass getClass (String className) ;
Get JOT class details for a particular class in the file, or null if it cannot be
found.
className is the name of the class required, either just the class name or
including its full path.
public JotClass[] getClasses();
Obtain a list of all the top-level classes defined in this file. If there are none,
an empty array is returned.
public String getName () ;
Return the full name of the file.
public String getPackage();
Get the name of the package that contains this file.
public JotPackages getPackageManager () ;
Obtain a reference to the package manager for this file.
public long getTimestamp () ;
Find out the last modified date for this file, expressed as a long value.
public Url getUrl();
Retrieve the Url for this file.

JotSourceFile Interface

If the file retrieved above is based on Java source code, then you have the ability
to update it through the com.borland.jbuilder.jot.JotSourceFile
interface, which extends JotFile. As well as modifying the items returned
through the parent interface, you can alter other items that apply to the file as a
whole.

160

Part VI: The Wizard Framework

You can use the package manager to locate the source for you:

JotSourceFile jsource = jpackages.getSourceFile (url);

Or you can use instanceof to check whether you have the source available and
then cast a JOT file reference accordingly:

if (jfile instanceof JotSourceFile)
JotSourceFile jsource = (JotSourceFile)jfile;

This interface adds the following methods:

public JotClassSource addClass (JotMarker marker, boolean
before, String name, boolean isInterface);
Construct a class source object from the given details and add it to the file. A
reference to the new class is returned.
marker is an existing item in the file to place the new class beside. If null,
the new class is added at the end.
before is true to insert the new class before the marker in the file, or false to
place if after the marker.

name is the name of the new class (without any package name).
isInterface is true if this is an interface declaration, or false if it is a class.

WARNING

The addClass method is the only way to create new classes or interfaces
within a JOT file. You cannot convert an existing class into an interface, nor the
reverse. The best you can do is to create a new class or interface and copy the
contents of the original into it.

public JotImport addImport (String name) ;
Create an import statement and insert it into the file. A reference to it is
returned.
name is the full name of the class or package to import, such as “java.
util.*” or “javax.swing.JPanel”.

public void addJotFileListener (JotFileListener listener);
Add a new object to notify of events affecting the file.
listener is the object to add.

public int getComparablelocation (JotMarker marker);

Convert marker locations into integer values that can be compared for order.
The marker with the lower integer value occurs earlier in the file.

marker is the item from the file to locate.
public String getFullClassName (String className) ;

Obtain the full class name for a given class as if it had been declared in this
file.
className is the base name of the class.

public JotImport getImport (String name);

public JotImport[] getImports();
Retrieve object(s) representing one or all of the import statements in the file.
A null is returned from the first version if the specified import is not found,
while an empty array is returned from the second if none exist.

3

name is the name of the class or package being imported, like “java.

util.*”,

Chapter 24: Java Object Toolkit 161

public boolean isReadOnly () ;
Returns true if the file cannot be modified, or false if it can be altered.
Although the file comes from a Java source file, it may be marked as read-
only itself.
public String out();
Obtain the content of the source file from this method.
public void removeClass (JotClass clazz);
Erase a class from the file.
clazz is a reference to the class to remove.
public void removeImport (JotImport imp);
Delete an import statement from the file.
imp is a reference to the import statement to remove.
public void removeJotFilelListener (JotFileListener
listener);
Delete a listener for events on the file.
listener is the object to remove.
public void reRead();
Force a reload of this file from its source. Any references to existing objects
from the file then become invalid. This method is intended for internal use
only.
public void setPackage (String packageName) ;
Establish the package to which this file belongs.
packageName is the full name of the package.
public void setTimestamp (long time);
Update the timestamp for this file.

time is the new timestamp as a long value.

JotMarker Interface

Most source elements also implement the com.borland.jbuilder.jot.
JotMarker interface to allow you to locate it within the file. Generally when
adding new code you place it either immediately before or after another element.
The abilities of this interface are:
public void addUserData (Object key, Object data);
Associate additional data with this element.
key is the identifier for the data.

data is the extra information encapsulated in an object. Erase the data for a
key by sending this as null.
public int getEndPosition();
public int getStartPosition();
Find the character position of the end or start of this marker within the file.
public Object getUserData (Object key);
Retrieve some additional data about this element, or null if there is none
there.

key is the identifier for the data.

162 Part VI: The Wizard Framework

JotFileListener Interface

You can react to several events occurring on JOT files by registering an instance
of the com.borland.jbuilder.jot.JotFileListener interface with each
file.
The methods called in response to the file events are:
public void fileClassChanged (JotFileEvent event);
When a class or interface is added to or removed from the file this method
fires.
event holds details about the file and the change.
public void fileImportChanged (JotFileEvent event);
Obtain notification of changes to the file’s import statements through this
method.
event holds details about the file and the change.
public void fileMiscChanged (JotFileEvent event);
Any changes to the file apart from those listed in the other methods are
notified through this one.
event holds details about the file and the change.
public void filePackageChanged (JotFileEvent event);
Respond to changes to the name of the package for the file.
event holds details about the file and the change.

JotFileEvent Class

Information about an event happening to a JOT file is transferred via a
com.borland.jbuilder.jot.JotFileEvent object, which extends com.
borland.primetime.util.DispatchableEvent. The one event class uses
different fields based on the type of event and is passed to different methods on
the listener, hence the dispatch method here.

The methods of this event class are as follows:

public JotFileEvent (JotSourceFile source, int id)

public JotFileEvent (JotSourceFile source, JotClassSource
clazz)

public JotFileEvent (JotSourceFile source, JotImport imp)
Create a new JOT file event.

source is the file that the event affects.

id is one of the constants below, identifying the type of event (and thus the
method it is sent to).
clazz refers to the class that was added or removed.
imp refers to the import statement that was changed.
public void dispatch(EventListener listener)
Call the appropriate method on the listener, based on the id of this event
object.
listeneris a JotFileListener instance to inform about this event.
public JotClassSource getClazz ()

Returns the class that was added or removed, or null if this is not a class
change event.

Chapter 24: Java Object Toolkit 163

public JotSourceFile getFile()
Retrieve the file that generated this event.

public JotImport getImport ()
Get the import statement that changed, or null if this is not an import
change event.

Several constants are also defined in this class:

public static final int CLASS CHANGED;

public static final int IMPORT CHANGED;

public static final int MISC CHANGED;

public static final int PACKAGE CHANGED;
Use these as the id value in the first constructor to create an appropriate type
of file event. The other constructors automatically set the correct value
internally.

JotClass Interface

Each class defined within a file is available through JOT as an instance of the
com.borland.jbuilder.jot.JotClass interface. This interface is a key
part of parsing and creating new Java code. Once you have the class, you can
access its fields, constructors, and methods, as well as its visibility and ancestor.
It is very similar to the standard Java class java.lang.Class.

From the file you retrieve an individual class as follows:

JotClass jclass = jfile.getClass ("wood.keith.questions.QuestionTag") ;

Or you can find all of them in the file with this:

JotClass[] jclasses = jfile.getClasses();

The methods of this interface are:

public void addUserData (Object key, Object data);
Associate user-defined data with this class, linked to a key value. Use the
getUserData method to retrieve it again.

key is the identifying value for the data.

data is the user-defined object containing information about this class.
Passing a null here erases any previous data held against the key.
public JotClass getComponentType () ;
If this class represents an array (see the isArray method), then this method
returns the type of the elements of that array. Otherwise it returns null.
public JotConstructor getConstructor (JotClass]|]
parameterTypes) ;
Obtain a reference to a particular constructor for this class, or null if no
match can be found. A java.lang.SecurityException may be thrown
if you do not have access to this information. Use getDeclared-
Constructor to consider only those constructors actually defined in this
class.
parameterTypes is an array of the types of parameters that this constructor
accepts in the order that they are declared. Pass an empty array if it takes no
parameters. Do not pass null.

164 Part VI: The Wizard Framework

public JotConstructor([] getConstructors();
Access all the constructors of this class through this method, including any
default one. It throws a java.lang.SecurityException if this
information is inaccessible. Use getDeclaredConstructors for only
those constructors defined in this class.

public JotConstructor getDeclaredConstructor (JotClass/(]
parameterTypes) ;
Locate a reference to a particular constructor defined within this class, or
null if it cannot be found. A java.lang.SecurityException may be
thrown if you do not have access to this information. Use getConstructor
to include consideration of any default constructor.
parameterTypes is an array of the types of parameters that this constructor
accepts in the order that they are declared. Pass an empty array if it takes no
parameters. Do not pass null.

public JotConstructor[] getDeclaredConstructors();
Find all the constructors defined within this class, or receive an empty array
if it refers to an interface or a primitive type. Use getConstructors to
include any default constructor.

public JotField getDeclaredField(String name) ;
Retrieve a reference to a particular field declared in this class (not inherited),
or null if the field cannot be found. You may receive a java.lang.
SecurityException if you do not have access to the field information.
Use getField to look at all fields in this class, including inherited ones.
name is the name of the field.

public JotField[] getDeclaredFields();
Get a list of the fields declared in this class, or an empty array if none are
defined here. No inherited fields are present. A java.lang.Security-
Exception may be thrown if you do not have access to this information.
Use getFields for all fields, including inherited ones.

public JotClass|[] getDeclaredInnerClasses();
Discover all the inner class declared in this class (but not those that are
inherited), or an empty list if there are none. Use getInnerClasses for all
inner classes, including inherited ones.

public JotMethod getDeclaredMethod (String name, JotClass]|]
parameterTypes) ;
Obtain a reference to a particular method declared in this class (not
inherited), or null if the method is not found. You may receive a java.
lang.SecurityException if you do not have access to the method
information. Use getMethod for all methods, including inherited ones.
name is the name of the method.
parameterTypes is an array of the types of parameters that this method
accepts in the order that they are declared. Pass an empty array if it takes no
parameters. Do not pass null.

public JotMethod[] getDeclaredMethods();

public JotMethod[] getDeclaredMethods (String name) ;
Get a list of the methods declared in this class, or an empty array if none are
defined here. No inherited methods are present. A java.lang.Security-

Chapter 24: Java Object Toolkit 165

Exception may be thrown if you do not have access to this information.
Use getMethods for all methods, including inherited ones.

name is the name of a particular method to match. This is useful for
overloaded methods with multiple versions. If not specified, all the methods
of this class are returned.

public JotField getField(String name) ;
Retrieve a reference to a particular field from this class or its ancestors, or
null if the field cannot be found. You may receive a java.lang.
SecurityException if you do not have access to the field information.
Use getDeclaredField to examine only those fields defined in this class
itself.
name is the name of the field.

public JotField[] getFields();
Discover all the fields of this class and its ancestors through this method. It
returns an empty array if this class or interface has no fields. For an array
type, it does not include the implicit length field. You may receive a
java.lang.SecurityException if the fields are not accessible. Use
getDeclaredFields for only those fields defined in this class.

public JotFile getFile();
Retrieve the file to which this class belongs.

public JotClass[] getInnerClasses();
Get a list of the inner classes defined in this class and its ancestors, or an
empty list if there are none. Use getDeclaredInnerClasses for only
those inner classes declared in this class.

public JotType[] getInterfaces();
Find out what interfaces this class implements with this method. For a class,
it returns an array of type references for those interfaces directly
implemented here. For an interface, it returns the set of superinterfaces. If no
interfaces are present, an empty array is returned.

public JotMethod getMethod (String name, JotClass]|]
parameterTypes) ;
Obtain a reference to a particular method from this class or its ancestors, or
null if the method is not found. You may receive a java.lang.
SecurityException if you do not have access to the method information.
Use getDeclaredMethod to only search through methods declared in this
class.
name is the name of the method.

parameterTypes is an array of the types of parameters that this method
accepts in the order that they are declared. Pass an empty array if it takes no
parameters. Do not pass null.

public JotMethod[] getMethods();

public JotMethod[] getMethods (String name) ;
Retrieve the public methods of this class and its ancestors through these
methods. They return an empty array if this class or interface has no
methods. You may receive a java.lang.SecurityException if the
fields are not accessible. Use getDeclaredMethods for methods of this
class excluding any inherited ones.

166

Part VI: The Wizard Framework

name is the name of a particular method to match. This is useful for
overloaded methods with multiple versions. If not specified, all the public
methods are returned.

public int getModifiers();
Determine the modifiers for this class: its visibility and its abstract, final, and
static status. Use the constants or methods from the java.lang.reflect.
Modifier class to query these settings.

public String getName () ;
Get the full name of this class or interface.

public JotType getSuperclass();
Retrieve an object representing the type of the ancestor of this class, or null
if this class is a primitive type, an interface, or refers to Object itself.

public JotType getType();
Obtain the JOT type object that corresponds to this class.

public Object getUserData (Object key);
Recall user-defined data associated with this class, or null if no such data
exists.
key is the identifying value for the data.

public boolean isArray();
Returns true if this class denotes an array class, or false if it does not. The
type of the elements is available through the getComponentType method.

public boolean isAssignableFrom(JotClass clazz);
Discover whether a class is assignment compatible with this class. If this
class represents a primitive type then it returns true if the parameter class is
exactly the same, and false otherwise. For normal classes and interfaces, the
method returns true if this class is an ancestor of the parameter class, and
false if it is not.
clazz is the class to assign to.

public boolean isInstance (Object obj);
Determine whether an object is an instance of this class. If this class is an
interface then the method returns true if the object or one of its ancestors
must implement that interface, and false otherwise. If this class is a true class
then it returns true if the object or one of its ancestors is that class, and false
if not. If this class is an array type then it returns true if the object is an array
of the element class or one of its descendents, and false otherwise. If this
class represents a primitive type the method always returns false.
ob7j is the object to match to this class.

public boolean isInterface();
Returns true if this class represents an interface, or false if it is a class or a
primitive type.

public boolean isPrimitive();
Find out if this class denotes a primitive class, returning true if it does, or
false if it does not. The JotPrimitiveClass class defines nine fields that
correspond to the eight primitive Java types and to void (booleanType,
byteType, charType, doubleType, floatType, intType, longType,
shortType, and voidType). Only these return true for this method; all
other instances return false.

Chapter 24: Java Object Toolkit 167

public Object newlInstance() throws InstantiationException,
IllegalAccessException;
Try to create a new instance of this class and return a reference to it. An
InstantiationException is thrown if this is an abstract class, an
interface, or a primitive type, while an IllegalAccessException
indicates that the class or its initializer is not accessible.

Derived from JotClass are the JotAnonymousClass and JotInnerClass
interfaces, which represent (as their names suggest) anonymous and inner classes
within your class.

JotClassSource Interface

If a source file is available for a class, the JotClass object also implements the
com.borland.jbuilder.jot.JotClassSource interface, allowing you to
update its contents. In this way you can build new classes, or alter existing
classes in the file.

Its extended abilities are:

public JotConstructorSource addConstructor (JotMarker
marker, boolean before);
Generate a new constructor for this class, add it to the code, and return a
reference to it.
marker is a reference to another item in the class to use as a base for
positioning this constructor. If null, it is added at the end of the class.
before is true to insert the constructor before the marker above, or false to
place it after the marker.

public JotFieldDeclaration addField(JotMarker marker,
boolean before, String variableType, String name);
Insert a field declaration into the class and return a reference to it.

marker and before are the same as above.
variableType is the data type for the variable.
name is the name of the new variable.

public JotInitBlock addInitBlock (JotMarker marker, boolean
before, int modifiers);
Add a new initialization block to the class and return a reference to it.
marker and before are the same as above.
modifiers is either java.lang.reflect.Modifier.STATIC or zero. If
the former, the block become a static initializer, otherwise it becomes an
instance initializer.

WARNING
Unfortunately, there is no way to retrieve the initialization block once created, so
hang onto the returned reference.

public JotInnerClass addInnerClass (JotMarker marker,
boolean before, String name, boolean isInterface);
Create a new inner class or interface and add it to this class, returning a
reference to the new item.
marker and before are the same as above.

name is the name of the new class or interface.

168 Part VI: The Wizard Framework

isInterface is true to construct an interface, or false to create a class.
public JotType addInterface (JotMarker marker, boolean
before, String name);
Add a new interface to this class and return a reference to its type.
marker and before are the same as above.
name is the name of the interface, and does not have to be fully qualified.
public JotMethodSource addMethod (JotMarker marker, boolean
before, String returnType, String name);
Generate a new method implementation for this class and return a reference
to it. Use the addMethodDeclaration method to add abstract methods.
marker and before are the same as above.
returnType is the data type of the return value from the method.
name is the name of the new method.
public JotMethodSource addMethodDeclaration (JotMarker
marker, boolean before, String returnType, String name);
Create a new abstract method or a prototype for an interface, insert it into the
class, and return a reference to it. Use the addMethod method for methods
implemented in this class.
marker and before are the same as above.
returnType is the data type of the return value from the method.
name is the name of the new method.
public int getComparablelocation (JotMarker marker) ;
Convert marker locations into integer values that can be compared for order.
The marker with the lower integer value occurs earlier in the file.
marker is the item from the file to locate.
public int getDeclaredModifiers();
Retrieve the modifiers actually declared in the file. Use the fields and
methods of java.lang.reflect.Modifier to query this value.
public JotSourceFile getDeclaringFile();
Obtain a reference to the source file that contains this class.
public void removeConstructor (JotConstructor constructor);
public void removeField (JotField field);
public void removeInitBlock (JotInitBlock block);
public void removeInnerClass (JotInnerClass inner);
public void removelInterface (JotType iface);
public void removeMethod (JotMethod method) ;
Remove the specified item from this class.
constructor, field, block, inner, iface, or method refer to the item
to be deleted.
public void setModifiers(int modifiers);
Update the modifiers for this class — its visibility and whether it is abstract,
final, and/or static.
modifiers is the collection of modifiers for this class. Use the constants
from the java.lang.reflect.Modifier class to build the value, OR-ing
them together.
public void setName (String name) ;
Set the unqualified name for this class.

Chapter 24: Java Object Toolkit 169

name is the new class name (without any package name).

public void setSuperclass (String superClass);
Alter the name of the ancestor for this class.

superClass is the name of the class from which this class derives. It does
not need to be fully qualified.

JotType Interface

The com.borland.jbuilder.jot.JotType interface represents a type
identifier within JOT. This may be a class, a primitive type, or an array.
Its methods are:
public String getFullName () ;
Obtain the full name of this type.
public JotClass getJotClass();
Retrieve a reference to the JOT class that this type represents, or null ifit is
not primitive or an array and has not been compiled.
public JotClassSource getJotClassSource();
Get the JOT source object for this type, or null if it is a primitive type or an
array.
public String getName () ;
Return the full name of this type.
public void setName (String value) throws
IllegalAccessException;
Update the name of this type.

value is the new name.

JotMethod Interface

From the JotClass object you can locate existing methods within the class.
Each is an instance of the com.borland.jbuilder.jot.JotMethod
interface, which provides access to details about each method.

The methods of this interface are:

public JotClass getDeclaringClass();
Obtain a reference to the class that contains this method.

public JotParameter getFirstParameter();
Retrieve information about the first parameter of this method, or null if it
has none. The returned class is not covered in this book.

public int getModifiers();
Determine the modifiers for this method: its visibility and its abstract, final,
and static status. Use the constants or methods from the java.lang.
reflect.Modifier class to query these settings.

public String getName () ;
Return the name of this method.

public JotParameter getParameter (String name) ;
Locate a particular parameter and return its details, or null if it does not
exist.

name is the name of the parameter to find.

170 Part VI: The Wizard Framework

public JotParameter[] getParameters();
Discover further details about the parameters that this method accepts. If it
takes none, an empty array results.

public JotClass[] getParameterTypes|();
Find out the types of parameters that this method accepts. An empty array is
returned if it takes no parameters.

public JotType getReturnType () ;
Obtain a reference to the type of the method’s return value.

public JotType[] getThrowSpecifiers();
Retrieve a list of the exception types that this method declares that it throws,
or an empty array if it does not define any.

The JotConstructor interface derives from this one, returning a name of
“<init>” and adding the ability to create a new instance of the class.

JotMethodSource Interface

When the source for a class is available you may be able to update its methods
through the com.borland.jbuilder.jot.JotMethodSource interface.
Check your reference to the JotMethod and cast it down to this interface if
available.

if (jmethod instanceof JotMethodSource) then
JotMethodSource jmethodSource = (JotMethodSource) jmethod;

The extended abilities of this interface are:

public JotParameterDeclaration addParameter (JotMarker
marker, boolean before, String type, String name);
Add a new parameter to this method and return a reference to it.
marker is a reference to another parameter in the method to use as a base for
positioning this parameter. If null, it is added at the end of the parameter
list.
before is true to insert the parameter before the marker above, or false to
place it after the marker.
type is the name of the type for this parameter. It does not have to be a fully
qualified name.
name is the name of the new parameter.

public JotType addThrowSpecifier (JotMarker marker, boolean
before, String type);
Include a new exception type in the method’s throws list and return a
reference to its type.
marker and before are the same as above.

type is the name of the exception class. It does not have to be a fully
qualified name.

public JotCodeBlock getCodeBlock() ;
Gain access to the body of the method through this method. It returns null if
the method is abstract. Get a list of the methods statements with the
getStatements method instead.

Chapter 24: Java Object Toolkit 171

public int getDeclaredModifiers();
Retrieve the modifiers for this method actually declared in this file: its
visibility and its abstract, final, and static status. Use the constants or
methods from the java.lang.reflect.Modifier class to query these
settings.

public JotStatement[] getStatements();
Obtain a list of the statements that make up the body of this method. An
empty array results if the method is abstract or currently has an empty body.
Add new statements through the object returned by the getCodeBlock
method.

public void removeParameter (JotParameter parameter);

public void removeThrowSpecifier (JotType spec);
Delete the given item from this method.
parameter and spec are references to the item to remove.

public void setModifiers(int modifiers);
Update the modifiers for this method — its visibility and whether it is abstract,
final, and/or static.
modifiers is the collection of modifiers for this method. Use the constants
from the java.lang.reflect.Modifier class to build the value, OR-ing
them together.

public void setName (String name) ;
Modify the name of this method.
name is the new name.

public void setParameterText (String parameters);
Set the entire parameter collection for this method as one string.
parameters is the list of parameters, like “JotMarker marker,
boolean before”.

public void setReturnType (String type);
Alter the return type of this method.
type is the new return type, such as “void” or “string”. It does not have
to be a fully qualified name.

As for JotMethod and JotConstructor, the JotConstructorSource
interface derives from this one, adding its own special abilities.

JotCodeBlock Interface

The body of a method, constructor, or initialization block is represented by an
instance of the com.borland.jbuilder.jot.JotCodeBlock interface. It
extends JotStatement, which is described below, and allows you to add to,
remove from, or alter the statements that make up the block.

Its methods are:

public JotAssignment addAssignment (JotMarker marker,
boolean before, String variableName, String wvalue);

public JotDo addDoStatement (JotMarker marker, boolean
before, String condition);

public JotFor addForStatement (JotMarker marker, boolean
before, String condition);

172

Part VI: The Wizard Framework

public JotIf addIfStatement (JotMarker marker, boolean
before, String condition);

public JotIf addIfStatement (JotMarker marker, boolean
before, String condition, boolean hasElse);

public JotInnerClass addInnerClass (JotMarker marker,
boolean before, String className);

public JotMethodCall addMethodCall (JotMarker marker,
boolean before, String methodName, String parameters);

public JotReturn addReturnStatement (JotMarker marker,
boolean before, String expression);

public JotStatement addStatement (JotMarker marker, boolean
before, String text);

public JotStatement addStatement (JotMarker marker, boolean
before, boolean semi, String text);

public JotTry addTryStatement (JotMarker marker, boolean
before, String type, String variableName) ;

public JotTry addTryStatement (JotMarker marker, boolean
before, String[] types, boolean hasFinally);

public JotVariableDeclaration
addVariableDeclaration (JotMarker marker, boolean before,
String variableType, String variableName) ;

public JotWhile addWhileStatement (JotMarker marker, boolean
before, String condition);
Add a statement of the specified type to this block. Note that these statements
appear at the top-most level within the block, and may have their own sub-
statements.

marker is a reference to another item in the class to use as a base for
positioning this statement. If nul1, the statement is added at the end of the
class.

before is true to insert the constructor before the marker above, or false to
place it after the marker.

className is the name of the inner class to define.

condition is the text for the condition to evaluate for an if statement or a
loop. In a for statement, this text includes the loop initialization and step
expression, such as “int index = 0; index < a.length; index++”.

expression is the text for the value to return from this method. Use an
empty string to return nothing.

hasElse is true if the i £ statement has an else part, or false (the default) if
it does not.

hasFinally is true if the try statement has a finally clause, or false if it
does not.

methodName is the name of the method to invoke. It may include an object
reference and/or nested calls, such as “text.substring(3,

6) .toUpperCase”.

parameters is the list of parameters for a method call expressed as text,
such as “3, 6”. Pass null if there are no parameters.

semi is true to add a terminating semicolon to the statement, or false to leave
it as is.

text is the entire statement as a string. A terminating semicolon is added as
necessary.

Chapter 24: Java Object Toolkit 173

type is the name of the exception being caught by the try statement. It does
not have to be a fully qualified name. This version of the method creates a
try with a single catch clause and no £inally clause.

types is a list of the names of exceptions to catch in this try statement.
They do not have to be fully qualified names. If an empty array is provided
then the statement has no catch clauses.

value is the text for the value to assign to a variable.
variableName is the name of the variable in the statement.

variableType is the type of the variable being declared. If this is a class, it
does not have to be a fully qualified name.

public JotAssignment[] getAssignments();
Find all the assignment statements in this code block and return them, or an
empty array if there are none.

public int getComparablelocation (JotMarker marker) ;
Convert marker locations into integer values that can be compared for order.
The marker with the lower integer value occurs earlier in the file.

marker is the item from the file to locate.

public JotClass[] getDeclaredInnerClasses();
Locate all the inner classes declared in this block and return them, or an
empty array if none are defined.

public JotMethodCall getMethodCall (String methodName) ;

public JotMethodCall[] getMethodCalls();

public JotMethodCall[] getMethodCalls (String methodName) ;
Get a list of one of all of the method calls in this code block. A null or an
empty array is returned if there are no matching method calls. For nested
method calls, like “text.substring (3, 6).toUpperCase ()”, only one
entry appears and refers to the outermost call.

methodName is the name of a particular method to locate. In the version that
returns a single object, only the first matching call (the outermost one in a
nested call) is retrieved.

public JotStatement[] getStatements();
Obtain a list of all the statements in this block, or an empty array if there are
none. The list does not include sub-statements within another statement, such
as the body of a loop.

public JotVariableDeclaration getVariableDeclaration (String
variableName) ;

public JotVariableDeclaration[] getVariableDeclarations () ;
Find one or all of the variable declarations in this code block. A null or an
empty array is returned if the declarations do not exist.
variableName is the name of the variable to locate.

public void removeAssignment (JotAssignment assignment) ;

public void removeInnerClass (JotInnerClass inner);

public void removeMethodCall (JotMethodCall methodCall) ;

public void removeStatement (JotStatement statement);

public void removeVariableDeclaration (
JotVariableDeclaration declaration);
Delete the specified item from this code block. Nothing happens if the item
does not belong to this block.

174 Part VI: The Wizard Framework

assignment, inner, methodCall, statement, and declaration are
references to the item to be removed.

The JotInitBlock interface represents the initialization block for a class and
derives from this one, recording the modifiers for the block.

JotSourceElement Interface

The com.borland.jbuilder.jot.JotSourceElement interface is the base
for all elements derived from a source file. If JOT is working with a class file
then this interface is not available.
Its methods are described below:
public int getIndentLevel ();
Obtain the logical indentation level for this element, with zero being against
the left margin.
public JotSourceElement getParent () ;
Find the parent element for this one. For example, an expression element
may be part of an if statement or a loop.

public String getText () ;
Retrieve the text for this element. It includes text for all sub-elements as well,
such as the entire code for a method.

public boolean isModified();
Returns true if the text for this element has been altered since it was last
parsed, or false if it is still the same.

public void setModified(boolean modified);
Mark the element as having changed with this method.
modified is true to note a change, or false to ignore it.

public void setText (String text);
Update the entire contents of this element by setting its text value. Any
existing sub-elements are discarded and new ones are created that correspond
to the altered text. The modified flag for this element is also set, forcing a re-
parse when getText is next called.

text is the new string version of this element and its contents.

The JotComment, JotExpression, and JotStatement interfaces listed
below also implement JotSourceElement since they are all part of the
contents of a source file.

JotCommentable Interface

Comments may only be applied to elements that implement the com.borland.
jbuilder.jot.JotCommentable interface. These items include JotSource-
File, JotClassSource, and JotCodeBlock

The available methods are:

public void addBlankLine (JotMarker marker, boolean before);
Add a blank line to the file.
marker is a reference to another item in the class to use as a base for
positioning this line. If nul1, the line is added at the end of the file.

Chapter 24: Java Object Toolkit 175

before is true to insert the line before the marker above, or false to place it
after the marker.

public JotComment addComment (JotMarker marker, boolean
before, int type, String text);
Insert a new comment into the file and return a reference to it. Delimiters
appropriate to the type of comment are added to the supplied text. If the
comment is multi-line or a Javadoc comment and it contains newline
characters, these are preceded by an asterisk.
marker and before are the same as above.
type is one of the constant values defined in the JotComment class.
text is the text of the comment.

public JotComment getComment (JotMarker marker, boolean
before);
Retrieve the comment before or after a particular element in the file, or null
if there is no comment there.
marker and before are the same as above.

public void removeComment (JotComment comment) ;
Delete a comment from the file. Nothing happens if the comment is not in
this file.

comment 1is a reference to the comment to remove.

JotComment Interface

Create or read comments within a file through the com.borland.jbuilder.
jot.JotComment interface. Comments are only available if the file is based on
source code.
The methods of this interface are:
public String getCommentText () ;
Get the entire text of the comment through this method, but excluding any
comments tags (starting with “@”). A null is returned if no text is found.
public String getNormalText () ;
Although this method should return the text for a Javadoc comment, it
always returns null.
public String getSummaryText () ;
Retrieve the first sentence from a comment — up to the first period (.) — or
null if there is no text.
public int getType();
Discover the type of this comment. It returns one of the constant values listed
below.

The following constants define the type of comment:

public static final int BLOCK;

public static final int DOC;

public static final int LINE;

public static final int NONE;
These represent a standard multi-line comment, a Javadoc comment, a
single-line comment, and an unknown type.

176 Part VI: The Wizard Framework

JotExpression Interface

Expressions within the code are represented by an instance of the
com.borland.jbuilder.jot.JotExpression interface. These items appear
within several statement types including if statements, loops, and assignment
statements. From an if statement you would access it with the following code:

JotExpression jexpr = jif.getCondition();

For an assignment you would use:

JotExpression jexpr = jassign.getRHS();

An expression may be a literal value, such as 1, true, or “Yes”, a reference to a
variable or object, like index or acct.getBalance (), or a calculation, such as
width / 2, among others.
The abilities of this interface are:
public JotAssignment getAssignment () ;
public JotCondition getCondition () ;
public JotMethodCall getMethodCall () ;
public JotNew getNew () ;
public JotExpression getOperation();
public JotValue getValue() throws IllegalArgumentException;
public JotVariable getVariable();
Obtain an element that more fully describes the expression and its contents,
or a null if the expression is not of the requested format.
public boolean isConstant();
Returns true if this expression is a constant value, or false if it is not.
public boolean isNull();
Returns true if the text of this expression is “null”, or false if it is anything
else. Even though an expression may result in null as the outcome of some
other calculation, it is not evaluated to determine this, and so returns false.

Sub-interfaces of this one provide greater detail about each type of expression.
Instances of these are returned by the various methods in this one and are shown
in Table 24-1.

Table 24-1. JotExpression descendents

Interface Purpose
JotAssignment An assignment to a variable.

JotBinaryExpression | An expression that contains a binary operator,
including assignments.

JotCondition An expression representing the conditional operator
(?:).

Jotlnitializer A set of initialization expressions for an array.

JotMethodCall A call to a method, providing the full method name and
any arguments.

JotNew The instantiation of a new object, including any
arguments.

JotSubscript An item within an array.

Chapter 24: Java Object Toolkit 177

Interface Purpose

JotTypeop A type operation such as a cast or an instanceof
expression.

JotUnaryExpression | An expression that contains a unary operator.

JotStatement Interface

Defining the base abilities of all statements, the com.borland.jbuilder.
jot.JotStatement interface is subclassed into specialized interfaces for each
type of statement.
The common functionality is:
public JotCodeBlock getCodeBlock() ;
Retrieve the code block that represents this statement, allowing you to add
and remove statements from it.
public JotStatement[] getStatements();
Obtain a list of the sub-statements that make up the body of this statement, or
an empty array if there is no body.

Many interfaces derive from this basic one, corresponding to each of the
statement types possible in Java, as shown in Table 24-2.

Table 24-2. JotStatement descendents

Interface Purpose

JotBreak A break out of a loop. Use the generic
addStatement methods of JotCodeBlock for
new breaks.

JotCase A case label within a switch statement. Retrieve
these from the JotSwitch.getCases method.

JotCatch A catch block from a try statement. Access these
via the getCatch or getCatches methods of
JotTry.

JotCodeBlock A block of code that is the body of another

statement or method. Retrieve it through the
getCodeBlock method of JotStatement,
although its exact meaning changes from one
statement type to another.

JotContinue A continue statement. Use the generic
addStatement methods of JotCodeBlock for
new continues.

JotDefault The default label within a switch statement.
Retrieve it from the JotSwitch.getDefault
method.

JotDo A do loop. Create new do loops with the

addDoStatement method of JotCodeBlock.

178 Part VI: The Wizard Framework

Interface
JotExpressionStatement

JotFieldDeclaration

JotFinally
JotFor

Jotlf

JotInitBlock

JotLabelled

JotReturn

JotSwitch

JotSynchronized

JotThrow

JotTry

JotVariableDeclaration

JotWhile

Purpose

A statement that consists of a single expression,
such as an assignment or a method call. Use the
addAssignment or addMethodCall methods of
JotCodeBlock to create these types of
statements.

The declaration of a field within a class or interface.
The addField method of JotClassSource
generates new declarations for you.

The finally clause of a try statement. Access it
via the JotTry.getFinally method.

A for loop. Create new for loops with the
addForStatement method of JotCodeBlock.

An if statement, and optional else clause. Use the
addIfStatement methods of JotCodeBlock to
add these to your code.

A class or instance initialization block. The
addInitBlock method of JotClassSource
creates new blocks for you.

A labeled statement — the destination for a break
or continue. Use the generic addStatement
methods of JotCodeBlock for new labels.

A return from a method, including an optional
return value. Create a new return statement with
the addReturnStatement method of
JotCodeBlock.

A switch statement, providing access to the
expression it evaluates and the case and default
clauses it refers to. Use the generic
addStatement methods of JotCodeBlock for
new switch statements.

A synchronized statement. Use the generic
addStatement methods of JotCodeBlock for
new synchronized sections.

A throw statement. Use the generic
addStatement methods of JotCodeBlock for
new throws.

A try statement, providing access to any catch
clauses and the optional finally clause. See the
addTryStatement methods of JotCodeBlock to
create these.

The declaration of a local variable. Use the
addvariableDeclaration method of
JotCodeBlock to create a new declaration.

A while loop. Create new while loops with the
addWhileStatement method of JotCodeBlock.

Chapter 24: Java Object Toolkit 179

JSPTagWizard Example

Complementing the Tag Library Descriptor wizard from the last chapter, the JSP
Tag wizard generates Java classes that support custom JSP tags. It is placed in
the Object Gallery since it creates a new file for the current project and appears
on the Web tab.

When invoked, the wizard displays a single-page dialog that asks for the
version of JSP to use (1.1, 1.2, or 2.0), the name of the package and class to
create, then what functionality the tag needs to support, and what attributes it
accepts. Figure 24-2 shows the wizard in action.

Figure 24-2. The JSP Tag wizard.

(1) JSP Tag Wizard x|

JSP Tag Class

Enter a name For vour class, what sort of Functionality it supports, and any
properties that it accepts

3 15P 11 iy IsP 1.2 i® ISP 2.0

Package |wood.keith.un.tags |~|
gassname|TESfTag |
Options [] Clasing kext Far tag Mested kag [w]
[_] Manipulate body of kag Repeat bady [

[_] Implement TryCatchFinally Simple kag [

[_] Dynamic attributes Extra info class []

Properties | || int - H add |
Marme | Twpe [Delete]

size [int :

| ok |[Canicel][Help]

Firstly you have to establish the wizard that utilizes JOT to generate the code.
The JspPTagWizard class shown in Listing 24-1 does this. It defines a static
field for the WizardAction (placing it in the Object Gallery (true) on the Web
tab), and registers this with the wizard manager in the OpenTools initialization
routine.

Listing 24-1. Wizard support for generating JSP tag classes.

package wood.keith.opentools.wizards.jsptags;

import java.io.File;

import java.util.ResourceBundle;
import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

import com.borland.jbuilder.node.JBProject;

import com.borland.jbuilder.paths.ProjectPathSet;

import com.borland.jbuilder.personality.WebAppPersonality;
import com.borland.primetime.PrimeTime;

import com.borland.primetime.help.HelpManager;

Part VI: The Wizard Framework

import com.borland.primetime.help.ZipHelpTopic;
import com.borland.primetime.ide.Browser;

import com.borland.primetime.node.FileNode;

import com.borland.primetime.personality.Personality;
import com.borland.primetime.util.VetoException;
import com.borland.primetime.vfs.Url;

import com.borland.primetime.wizard.BasicWizard;
import com.borland.primetime.wizard.Wizard;

import com.borland.primetime.wizard.WizardAction;
import com.borland.primetime.wizard.WizardHost;
import com.borland.primetime.wizard.WizardManager;
import com.borland.primetime.wizard.WizardPage;

/**
* This class defines the "JSP Tag" wizard at the highest level.
* It sets the dialog pages to be displayed and generates the
* JSP tag class as defined by user input.
*
* @author Keith Wood
* @version 1.0 9 November 2000
* @version 2.0 6 February 2002 - JSP 1.2
* @version 3.0 10 February 2004 - JSP 2.0
4

public class JSPTagWizard extends BasicWizard {

private static final ResourceBundle res = Res.getResource();
private static final String VERSION = "3.0";

public static final String TITLE = res.getString("JSPWizardTitle");

// Internal variables
private JSPTagWizardPage tagPage;

APT
APT

/**
* Register the "JSP Tag" tool.
*
* Provides the needed OpenTools interface required to register the
* WizardAction which defines and creates this wizard.
*
* @param majorVersion the major version of the current OpenTools
* @param minorVersion the minor version of the current OpenTools
74

public static void initOpenTool (byte majorVersion, byte minorVersion) {
if (majorVersion != PrimeTime.CURRENT MAJOR VERSION) {

return;

}
WizardManager.registerWizardAction (WIZARD JSPTag) ;
if (PrimeTime.isVerbose()) {
System.out.println ("Loaded JSP Tag wizard v" + VERSION) ;

System.out.println ("Written by Keith Wood (kbwood@iprimus.com.au)");

—

/**
* Definition of "JSP Tag" WizardAction.
*
* This 1s an OpenTools registered action defining where the wizard
* will appear in the IDE and a factory for creating each instance
* of this wizard.
74

public static final WizardAction WIZARD JSPTag = new WizardAction (
res.getString ("JSPWizardName"),
res.getString ("JSPWizardChar") .charAt (0),
res.getString ("JSPWizardTip"),
new ImageIcon (ClassLoader.getSystemResource (
"wood/keith/opentools/wizards/jsptags/jsptagle.gif")),
new ImageIcon (ClassLoader.getSystemResource (
"wood/keith/opentools/wizards/jsptags/jsptag32.gif")), true,
res.getString ("ObjectGalleryPage")) {

}i

/

* % Sk Sk Gk % % %

*

pul

—

R A

*

pr

Chapter 24: Java Object Toolkit

// Override method so wizard is disabled if no active project.
public void update (Object source) {
Browser browser = Browser.findBrowser (source) ;
setEnabled ((browser != null) &&
(browser.getActiveProject () != null));
}

protected Wizard createWizard() {
return new JSPTagWizard() ;
}

/**
* JBuilder 10+ - only display for the Web app personality.

*

* @return the list of personalities to which this action applies

4
public Personality[] getPersonalities () {
return new Personality[] {WebAppPersonality.webAppPersonality};

}

*

Wizard startup.

"JSP Tag" wizard is to become visible,
create and order the wizard pages to be displayed.

@param host the WizardHost that owns this wizard instance.
@return the initial WizardPage to show.
/
blic WizardPage invokeWizard(WizardHost host) {
setWizardTitle (TITLE) ;
_tagPage = new JSPTagWizardPage (
host.getBrowser () .getProjectView () .getActiveProject());
addWizardPage (_tagPage) ;
return super.invokeWizard (host);

*
Assemble file Url.
From the given parameters generates a fully qualified location
where the "JSP Tag" file will be written.
This is returned in the form of a Url.
@param project the JBProject in which the node is created.
@param packageName the name of the package in which file
is created.
@param fileName the name of the file to be created.
@return the Url which was created.
/

181

otected static Url makeFileUrl (JBProject project, String packageName,

String fileName) {

try {
ProjectPathSet paths = project.getPaths();
Url[] sourcePaths = paths.getSourcePath();
String projectPath = "";

if (sourcePaths.length > 0) {
projectPath = sourcePaths[0].getFile();

String dirName = projectPath;

if (packageName != null && packageName.length() > 0) {
dirName = dirName + '/' + packageName.replace('.', '/');

}

String filePath = dirName + '/' + fileName;

File newFile = new File (filePath) ;

return new Url (newFile) ;

182 Part VI: The Wizard Framework

catch (Exception ex) {
ex.printStackTrace () ;
return null;

—

/**
* Creates/replaces file node.
*
* From the given parameters create/replace a project file node for the
* "JSP Tag" file to be written.
*
* @param project the JBProject in which the node is created.
* @param packageName the name of the package in which file
By is created.
* @param fileName the name of the file to be created.
* @return the FileNode which was created.
4

protected static FileNode createNode (JBProject project,
String packageName, String fileName) {
Url filePath = makeFileUrl (project, packageName, fileName) ;
// getNode () will create a node if does not exist
FileNode newNode = project.getNode (filePath) ;
newNode.setParent (project) ;
return newNode;

—

*

Perform code generation.

Produces the "JSP Tag" file as defined by user input on the
wizard pages. It is added as a node to the currently active project
and replaces any previously generated file of the same name.

P

@throws VetoException 1f unable to finish
74
protected void finish() throws VetoException {
Browser browser = wizardHost.getBrowser () ;
JBProject project =
(JBProject)browser.getProjectView () .getActiveProject () ;
// Save selected JSP version for next time
JSPTagProperties.JSP VERSION.setValue (tagPage.getJSPVersion());
FileNode javaNode = null;
try {
if (tagPage.isExtralnfo()) {
// Create the extra info source file
javaNode = createNode (project, tagPage.getPackageName (),
__tagPage.getClassName () + "ExtraInfo.java");
new JSPTagExtraGenerator () .writeSource (project,
javaNode, tagPage.getPackageName (),
_tagPage.getClassName () + "ExtraInfo",
__tagPage.getJSPVersion());

}

// Create the tag source file

javaNode = createNode (project, tagPage.getPackageName (),
_tagPage.getClassName () + ".java");

new JSPTagGenerator () .writeSource (project, javaNode,
_tagPage.getPackageName (), tagPage.getClassName (),
_tagPage.getJSPVersion (), tagPage.isBodyAltered(),
__tagPage.isRepeated(), _tagPage.isEndUsed(),
_tagPage.isNested(),

_tagPage.isTryCatchFinally (), tagPage.isSimpleTag(),
__tagPage.isDynamicAttributes (), tagPage.getProps()):;
}
catch (Exception ex) {

ex.printStackTrace () ;

JOptionPane.showMessageDialog (wizardHost.getBrowser (),
res.getString ("GenerationError") + "\n" +
ex.getClass () .getName () + "\n" + ex.getMessage(),
wizardTitle, JOptionPane.ERROR MESSAGE) ;

Chapter 24: Java Object Toolkit 183

}

try {
// Open the generated/updated file in the Content Pane.
browser.setActiveNode (javaNode, true);

}

catch (Exception ex) {
// Ignore

}

}

/**
* Wizard termination.
*

* The Wizard has been completed (finished or cancelled) and any
* resource cleanup to help the garbage collector can occur here.
/

public void wizardCompleted() {

}

/**
* Provide help for the wizard.
*

* @param page the current page in the wizard

* @param host the wizard host

/

public void help (WizardPage page, WizardHost host) {

HelpManager.showHelp (
new ZipHelpTopic (null, ClassLoader.getSystemResource (
getClass () .getName () .replace('."', '/') + ".html").toString()),
page.getPageComponent (host)) ;

}

Starting the wizard calls the invokeWizard method, which creates and adds the
single page to the dialog. There is no cleanup necessary in the wizard-
Completed method, while the help method returns an appropriate help topic for
display.

Most of the wizard activity takes place in its £inish method. It starts by
creating a new Java source node within the current project, using the package and
class name supplied by the user to correctly name and position the file. The
createNode and makeFileUrl methods assist in this task. After generating the
file’s contents, the new node is opened in the Content Pane and made active.

Generating a Java Class

Based on the user’s selections, a Java class is created using JOT. The
writeSource method of the JspTagGenerator class operates on the new
node to fill it with code (see Listing 24-2). First it retrieves all the information
entered by the user into the wizard’s Ul and stores them in local variables. Then
it accesses the new file through the package manager and starts adding code.
Following the import statements, a new class is created within the file and
various helper methods supply its contents. Finally, the changes are committed to
the source file in memory, and then saved out to disk. Remember to free up any
resources used by JOT before returning.

Listing 24-2. Generating code with JOT.

package wood.keith.opentools.wizards.jsptags;

import java.io.IOException;
import java.lang.reflect.Modifier;
import java.text.DateFormat;

184 Part VI: The Wizard Framework

import java.text.MessageFormat;
import java.util.Date;

import java.util.Iterator;
import java.util.ResourceBundle;
import java.util.SortedMap;

import com.borland.jbuilder.jot.JotClassSource;
import com.borland.jbuilder.jot.JotCodeBlock;

import com.borland.jbuilder.jot.JotComment;

import com.borland.jbuilder.jot.JotFieldDeclaration;
import com.borland.jbuilder.jot.JotIf;

import com.borland.jbuilder.jot.JotMethodSource;
import com.borland.jbuilder.jot.JotPackages;

import com.borland.jbuilder.jot.JotSourceFile;
import com.borland.jbuilder.jot.JotTry;

import com.borland.jbuilder.jot.JotVariableDeclaration;
import com.borland.jbuilder.jot.JotWhile;

import com.borland.jbuilder.node.JBProject;

import com.borland.primetime.node.FileNode;

/**
* Generate the JSP tag class.
*
* Q@author Keith Wood
* @version 1.0 9 November 2000
* @version 2.0 6 February 2002 - added JSP 1.2 support
* @version 3.0 10 February 2004 - added JSP 2.0 support
4

public class JSPTagGenerator {

private static final ResourceBundle res = Res.getResource();
// Meaningful names for code generation

private static final boolean AFTER = false;

private static final boolean BEFORE = true;

private static final String[] OUTER TAG = new String[] {"OuterTag"};
/**

This is the "guts" of the wizard. This is where all the work
* is done to create the source file for the tag class.

*

* @param project the JBuilder project

* @param file the file node to be written to

* @param packageName the name of the new class' package

* @param className the name of the new class

* @param jspVersion the version of JSP in use

* @param 1isBodyAltered true if body content is altered,

* false if not

* @param 1isRepeated true if body is repeated, false if not
* @param 1sEndUsed true if end tag generated, false if not
* @param isNested true if tag expects to be nested,

* false if not

* @param 1isTryCatchFinally true if implementing TryCatchFinally,

* false if not

* @param isSimpleTag true if a JSP 2.0 simple tag, false if not
* @param 1isDynamicAttrs true if uses dynamic attributes,

* false if not

* @param props details about the tag attributes

74

public void writeSource (JBProject project, FileNode file,
String packageName, String className, String jspVersion,
boolean isBodyAltered, boolean isRepeated, boolean isEndUsed,
boolean isNested, boolean isTryCatchFinally, boolean isSimpleTag,
boolean isDynamicAttrs, SortedMap props) {
boolean hasProperties = false;
boolean hasDateAttribute = false;

Iterator names = props.keySet().iterator();
while (names.hasNext()) {
hasProperties = true;

Chapter 24: Java Object Toolkit 185

if (props.get (names.next ()) .equals ("Date")) {
hasDateAttribute = true;
break;

}

names = null;

// Access the new file
JotPackages jpackages = project.getJotPackages();
JotSourceFile jsource = jpackages.getSourceFile (file.getUrl());
// Add the package statement and imports to the JotSourceFile
if (packageName.length() > 0) {
jsource.setPackage (packageNamne) ;
}
jsource.addImport ("java.io.*");
if (hasDateAttribute) {
jsource.addImport ("java.util.*");
}
jsource.addImport ("javax.servlet.jsp.*");
jsource.addImport ("javax.servlet.jsp.tagext.*");

// Add the class declaration
JotClassSource jclass = createClass (jsource, className, JjspVersion,
isEndUsed, isNested, isRepeated, isBodyAltered, isTryCatchFinally,
isSimpleTag, isDynamicAttrs);
if (hasProperties || isNested) {
// Add internal fields
addInternalFields (jclass, props, isNested);
}
// Add attribute setters
addAttributeSetters (jclass, props);
if (isDynamicAttrs) {
// Add DynamicAttributes method setDynamicAttribute
addSetDynamicAttributeMethod (jclass) ;
}
if (isSimpleTag) {
// Add SimpleTag method doTag override
addDoTag (jclass, isNested, isRepeated, isBodyAltered,
hasProperties) ;
}
else {
// Add Tag method doStartTag override
addDoStartTag (jclass, JjspVersion, isEndUsed, isNested, isRepeated,
isBodyAltered, hasProperties);
if (isBodyAltered || isRepeated) {
// Add BodyTag method doInitBody override
addDoInitBody (jclass) ;
// Add BodyTag method doAfterBody override
addDoAfterBody (jclass, JjspVersion, isRepeated);
}
if (isEndUsed) {
// Add Tag method doEndTag override
addDoEndTag (jclass) ;

}

if (isTryCatchFinally) {
// Add TryCatchFinally methods doCatch and doFinally
addTryCatchFinallyMethods (jclass) ;

}

// Save the changes
jpackages.commit (jsource) ;

// Write the changes out
try {
file.save();

}
catch (IOException ex) {

ex.printStackTrace();

186

—

Part VI: The Wizard Framework

// Free up resources used
jpackages.release (jsource) ;

*

Add the class declaration.

@param jsource the source file being generated

@param className the name of the new class

@param jspVersion the version of JSP in use

@param 1isEndUsed true if content is written after the body,
false if none

@param 1isNested true if the tag looks for an enclosing
tag, false if standalone

@param 1isRepeated true if the tag iterates over its body,

false if it processes it just once
(if at all)

@param 1isBodyAltered true if the tag changes the body content,
false if it leaves it unchanged

@param 1isTryCatchFinally true if the tag deals with its own errors
during processing, false if it does not

@param 1isSimpleTag true if tag is a JSP 2.0 simple tag,
false if not
@param 1isDynamicAttrs true if tag accepts unspecified

attributes, false if not
@return the class being generated

O T e e

*/

private JotClassSource createClass (JotSourceFile jsource,

—

String className, String jspVersion, boolean isEndUsed,
boolean isNested, boolean isRepeated, boolean isBodyAltered,
boolean isTryCatchFinally, boolean isSimpleTag,
boolean isDynamicAttrs) {
JotClassSource jclass =
jsource.addClass (null, AFTER, className, false);
StringBuffer comment = new StringBuffer();
comment .append (isEndUsed ? res.getString("TagIsEndUsed") : "").
append (isNested ? res.getString("TagIsNested") : "").
append (isRepeated ? res.getString("TagIsRepeated") : "").
append (isBodyAltered ? res.getString("TaglsBodyAltered") : "").
append (isTryCatchFinally ? res.getString ("TagIsTryCatchFinally")
"") .append(isSimpleTag ? res.getString("TaglsSimpleTag") : "").
append (isDynamicAttrs ? res.getString("TagIsDynamicAttrs") : "");
jsource.addComment (jclass, BEFORE, JotComment.DOC,
MessageFormat.format (res.getString ("JSPTagClassHeader"),

new Object[] {jspVersion}) + (comment.length() == 0 2 ""
" " + res.getString("JSPTagClassHeaderCharacteristics") +
comment.toString ()) +

".\n \nQ@author JSP Tag Wizard\n@version 1.0 " +

DateFormat.getDateInstance (DateFormat.LONG) . format (new Date())) ;
jclass.setModifiers (Modifier.PUBLIC) ;
jclass.setSuperclass (isSimpleTag ? "SimpleTagSupport"
(isBodyAltered || isRepeated ? "BodyTagSupport" : "TagSupport"));
if (isDynamicAttrs) {
jclass.addInterface (null, AFTER, "DynamicAttributes");
}
if (isTryCatchFinally) {
jclass.addInterface (null, AFTER, "TryCatchFinally");
}

return jclass;

* *

* Add internal fields for the tag class.

*

* @param jclass the class being generated

* @param props the names and types of the properties for this tag
* @param isNested true if the tag looks for an enclosing tag,

* false if standalone

4

private void addInternalFields (JotClassSource jclass, SortedMap props,

Chapter 24: Java Object Toolkit 187

boolean isNested) {

JotComment jcomment = jclass.addComment (null, AFTER, JotComment.LINE,
" " + res.getString("InternalFields"));

jclass.addBlankLine (jcomment, BEFORE) ;
if (props.size() > 0) {

jclass.addComment (null, AFTER, JotComment.DOC,

" @todo " + res.getString("InternalFieldsTodo") + " ");

}
Iterator names = props.keySet().iterator();
while (names.hasNext ()) {

String name = (String)names.next();
JotFieldDeclaration jfield = jclass.addField(
null, AFTER, (String)props.get(name), " " + name);

jfield.setModifiers (Modifier.PRIVATE) ;
}
if (isNested) {
jclass.addComment (null, AFTER, JotComment.DOC,
" @todo " + MessageFormat.format (res.getString("OuterTagTodo"),
OUTER _TAG) + " ");
JotFieldDeclaration jfield =
jclass.addField (null, AFTER, "OuterTag", " enclosingTag");
jfield.setModifiers (Modifier.PRIVATE) ;
jfield.setInitializer ("null") ;

* Add attribute setters for the tag.

* @param jclass the class being generated
* @param props the names and types of the properties for this tag
74

private void addAttributeSetters(JotClassSource jclass,

SortedMap props) {
Iterator names = props.keySet().iterator();
while (names.hasNext ()) {
String name = (String)names.next();
JotMethodSource jmethod = jclass.addMethod (null, AFTER, "void",
"set" + name.substring (0, 1).toUpperCase() + name.substring(l));
JotComment jcomment = jclass.addComment (
jmethod, BEFORE, JotComment.DOC,
MessageFormat.format (res.getString ("AttributeSetterMethod"),
new Object[] {name}) + "\n \n@param value " +
res.getString ("ValueParam")) ;
jclass.addBlankLine (jcomment, BEFORE) ;
Jjmethod.setModifiers (Modifier.PUBLIC) ;

jmethod.addParameter (null, AFTER, (String)props.get (name), "value");
jmethod.getCodeBlock () .
addAssignment (null, AFTER, " " + name, "value");
}
}
/**

* Add DynamicAttributes method setDynamicAttribute.
*

* @param jclass the class being generated
74

private void addSetDynamicAttributeMethod (JotClassSource jclass) {

JotMethodSource jmethod =
jclass.addMethod (null, AFTER, "void", "setDynamicAttribute");
JotComment jcomment =
jclass.addComment (jmethod, BEFORE, JotComment.DOC,
res.getString ("SetDynamicAttributeMethod") +

"\n \n@param uri "4

res.getString ("UriParam") + "\n@param localName " +
res.getString ("LocalNameParam") + "\n@param value LA
res.getString ("ValueParam") + "\n@throws JspException " +

res.getString ("SetDynamicAttributeJspException")) ;
jclass.addBlankLine (jcomment, BEFORE) ;
jmethod.setModifiers (Modifier.PUBLIC) ;

188

—

Part VI: The Wizard Framework

jmethod.addParameter (null, AFTER, "String", "uri");
jmethod.addParameter (null, AFTER, "String", "localName") ;
jmethod.addParameter (null, AFTER, "Object", "value");

jmethod.addThrowSpecifier (null, AFTER, "JspException");
JotCodeBlock jcode = jmethod.getCodeBlock() ;
jcode.addComment (null, AFTER, JotComment.DOC,
" @todo " + res.getString("SetDynamicAttributeTodo") + " ");
jcode.addStatement (null, AFTER, "throw new JspException (\"" +
MessageFormat.format (res.getString ("SetDynamicAttributeThrow"),

new Object[] {"\" + localName + \"", "\" + uri + \""}) + "\")");

* *

* Add SimpleTag method doTag override.

*

* @param jclass the class being generated

* @param 1isNested true if the tag looks for an enclosing tag,
* false if standalone

* @param 1isRepeated true if the tag iterates over its body,

b false if it processes it just once (if at all)
* @param 1isBodyAltered true 1if the tag changes the body content,

* false if it leaves it unchanged

* @param hasProperties true if the tag has properties,

* false otherwise

74

private void addDoTag(JotClassSource jclass, boolean isNested,

boolean isRepeated, boolean isBodyAltered, boolean hasProperties)
JotMethodSource jmethod =
jclass.addMethod (null, AFTER, "void", "doTag");
JotComment jcomment =
jclass.addComment (jmethod, BEFORE, JotComment.DOC,
res.getString ("DoTagMethod") + (hasProperties ?

"\n" + res.getString("DoTagHasProperties™) : "") +
"\n \n@throws IOException "o+
res.getString ("DoTagIOException") +

"\n@throws JSPException "o

res.getString ("DoTagdspException”) +

"\n@throws SkipPageException " +

res.getString ("DoTagSkipPageException")) ;

jclass.addBlankLine (jcomment, BEFORE) ;
Jjmethod.setModifiers (Modifier.PUBLIC) ;
jmethod.addThrowSpecifier (null, AFTER, "IOException");
jmethod.addThrowSpecifier (null, AFTER, "JspException");
JotCodeBlock jcode = jmethod.getCodeBlock() ;
if (isNested) {

jcode.addComment (null, AFTER, JotComment.LINE,

res.getString ("DoTagFindEnclosing")) ;
jcode.addComment (null, AFTER, JotComment.DOC,

{

" @todo " + MessageFormat.format (res.getString("OuterTagTodo"),

OUTER _TAG) + " ");

jcode.addAssignment (null, AFTER, " enclosingTag",

" (OuterTag) findAncestorWithClass (this, OuterTag.class)");
JoELE Jif =

jcode.addIfStatement (null, AFTER, " enclosingTag == null");

jif.getThen () .getCodeBlock () .addStatement (null, AFTER,

"throw new JspException (\"" +
MessageFormat.format (res.getString ("DoTagThrowNestingError"),
OUTER_TAG) + "\")");

}

JotVariableDeclaration jvar =

jcode.addVariableDeclaration (null, AFTER, "JspWriter", "out");
jvar.setInitializer ("getdspContext () .getOut ()") ;

if (isRepeated || isBodyAltered) {
jcode.addComment (null, AFTER, JotComment.DOC,
" @todo " + res.getString("TagOpeningOutputTodo") + " ");
jcode.addStatement (null, AFTER, "out.print (\"" +
res.getString ("TagOpeningOutputValue") + "\")");
jvar = jcode.addVariableDeclaration (
null, AFTER, "JspFragment", "body"):;

Chapter 24: Java Object Toolkit 189

jvar.setInitializer ("getdspBody()") ;
if (isRepeated) {
jcode.addComment (null, AFTER, JotComment.DOC,
" @todo " + res.getString("RepeatInitTodo") + " ");
jcode.addComment (null, AFTER, JotComment.DOC,
" @todo " + res.getString("RepeatTestTodo") + " ");
JotWhile jwhile =
jcode.addWhileStatement (null, AFTER, "repeatBody"):;
jcode = jwhile.getCodeBlock() ;
}
jcode.addComment (null, AFTER, JotComment.DOC,

" @todo " + res.getString("DoTagAccessBodyTodo") + " ");
jcode.addMethodCall (null, AFTER, "body.invoke", "out");
jcode = jmethod.getCodeBlock () ;
jcode.addComment (null, AFTER, JotComment.DOC,

" @todo " + res.getString("TagClosingOutputTodo") + " ");
jcode.addStatement (null, AFTER, "out.print (\"" +

res.getString ("TagClosingOutputValue") + "\")");

}
else {
jcode.addComment (null, AFTER, JotComment.DOC,

" @todo " + res.getString("TagOutputTodo") + " ");
jcode.addStatement (null, AFTER, "out.print (\"" +

res.getString ("TagOutputValue") + "\")");

—

/**
* Add Tag method doStartTag override.
*
* @param jclass the class being generated
* @param jspVersion the version of JSP in use
* @param 1sEndUsed true if content is written after the body,
* false if none
* @param 1isNested true if the tag looks for an enclosing tag,
* false if standalone
* @param 1isRepeated true if the tag iterates over its body,
b false if it processes it just once (if at all)
* @param isBodyAltered true 1if the tag changes the body content,
* false if it leaves it unchanged
* @param hasProperties true if the tag has properties,
* false otherwise
74

private void addDoStartTag(JotClassSource jclass, String JjspVersion,
boolean isEndUsed, boolean isNested, boolean isRepeated,
boolean isBodyAltered, boolean hasProperties) {
boolean isJSP11l = jspVersion.equals (JSPTagProperties.JSP 11);
JotMethodSource jmethod = jclass.addMethod (null, AFTER,
"int", "doStartTag"):;
JotComment jcomment =
jclass.addComment (jmethod, BEFORE, JotComment.DOC,
res.getString ("DoStartTagMethod") + "\n \n" +

(hasProperties ? res.getString("DoStartTagHasProperties") : "") +
"\n \n@return " +

(!isBodyAltered && !isRepeated ? "" : MessageFormat.format (
res.getString ("DoStartTagReturnBody"), new Object[]

{(isJsSpP11 2 "EVAL BODY TAG" : "EVAL BODY BUFFERED"),

(isJSP1l ? res.getString("DoStartTagReturnlIterates") : "")}) +
"\n ") + MessageFormat.format (

res.getString ("DoStartTagReturn"), new Object|[]
{"EVAL BODY INCLUDE", "SKIP BODY"}) +

"\n@throws JspException " +

res.getString ("DoStartTagdspException")) ;
jclass.addBlankLine (jcomment, BEFORE) ;
Jjmethod.setModifiers (Modifier.PUBLIC) ;
jmethod.addThrowSpecifier (null, AFTER, "JspException");
JotTry jtry = jmethod.getCodeBlock() .

addTryStatement (null, AFTER, "IOException", "ex");
JotCodeBlock jcode = jtry.getCodeBlock() ;
JotIf jif = null;

190

Part VI: The Wizard Framework

if (isNested) {
jcode.addComment (null, AFTER, JotComment.LINE,
" " + res.getString("DoTagFindEnclosing")) ;
jcode.addComment (null, AFTER, JotComment.DOC,
" @todo " + MessageFormat.format (res.getString("OuterTagTodo"),
OUTER _TAG) + " ");

jcode.addAssignment (null, AFTER, " enclosingTag",
" (OuterTag) findAncestorWithClass (this, OuterTag.class)");
jif = jcode.addIfStatement (null, AFTER, " enclosingTag == null");

jif.getThen () .getCodeBlock () .addStatement (null, AFTER,
"throw new JspException (\"" +
MessageFormat.format (res.getString ("DoTagThrowNestingError"),
OUTER_TAG) + "\")");
}
JotVariableDeclaration jvar =
jcode.addVariableDeclaration (null, AFTER, "JspWriter", "out"):;
jvar.setInitializer ("pageContext.getOut()") ;
jcode.addComment (null, AFTER, JotComment.DOC,
" @todo " + res.getString("TagOpeningOutputTodo") + " ");
jcode.addStatement (null, AFTER, "out.print (\"" +
(isEndUsed ? res.getString("TagOpeningOutputValue")
res.getString ("TagOutputvValue™)) + "\")");
jtry.getCatches () [0] .getCodeBlock () .
addStatement (null, AFTER, "ex.printStackTrace()");
jtry.getCatches () [0] .getCodeBlock () .addStatement (null, AFTER,
"throw new JspException (ex.getMessage())");

if (isRepeated) {
jcode.addComment (null, AFTER, JotComment.DOC,

" @todo " + res.getString("RepeatInitTodo") + " ");
jcode.addComment (null, AFTER, JotComment.DOC,

" @todo " + res.getString("RepeatTestTodo") + " ");
jif = jcode.addIfStatement (null, AFTER, "repeatBody", true);
jcode = jif.getThen () .getCodeBlock() ;
jcode.addComment (null, AFTER, JotComment.DOC, " @todo " +

res.getString ("DoStartTagFirstIterationTodo") + " ");
jcode.addReturnStatement (null, AFTER,

(isJspll 2 "EVAL BODY TAG" : "EVAL BODY BUFFERED")) ;
jif.getElse () .getCodeBlock() .

addReturnStatement (null, AFTER, "SKIP BODY");

}

else {
jcode.addReturnStatement (null, AFTER, (isBodyAltered ?
(isJdspll 2 "EVAL BODY TAG" : "EVAL BODY BUFFERED")
(isEndUsed *? "EVAL BODY INCLUDE" : "SKIP BODY"))) ;
}
}
/**

* Add Tag method doInitBody override.
*
* @param jclass the class being generated
74
private void addDoInitBody(JotClassSource jclass) {
// Code removed
}

/**
* Add Tag method doAfterBody override.
*
* @param jclass the class being generated
* @param jspVersion the version of JSP in use
* @param isRepeated true if the tag iterates over its body,
b false if it processes it just once (if at all)
74

private void addDoAfterBody(JotClassSource jclass, String jspVersion,
boolean isRepeated) {
// Code removed

Chapter 24: Java Object Toolkit 191

/**
* Add Tag method doEndTag override.

*

* @param jclass the class being generated
4
private void addDoEndTag(JotClassSource jclass) {
// Code removed
}

/**
* Add TryCatchFinally methods doCatch and doFinally.

*

* @param jclass the class being generated
4
private void addTryCatchFinallyMethods (JotClassSource Jjclass) {
// Code removed
}
}

The createClass method actually adds the new class to the file. It also supplies
a Javadoc comment for the class and sets its visibility and parent class. If the JSP
1.2 try-catch-finally or the JSP 2.0 dynamic attributes functionality is required,
the appropriate interface is added as well.

The addInternalFields method prepares the class, if necessary, by
declaring fields for the attributes that it accepts. Each field is created with a type
and name, and then its visibility is set. In the addAttributeSetters method,
setter methods are inserted for each attribute entered by the user. This method
shows how to add a parameter to a method, and how to generate assignment
statements.

The addDoStartTag method illustrates adding a more complex method. A
possible exception thrown by the method is specified, as is its visibility, and a
Javadoc comment. The main body of the method is enclosed within a try
statement, with code added to its first (and only) catch clause to report the error
and transform it into another type of exception. You also see a variable
declaration with an initializer value, if statements (one with an else), various
assignments, method calls, and return statements.

TIP

Add Javadoc comments that start with “@todo” at appropriate places in your
code. These are automatically found by JBuilder and are presented in the
Structure Pane for the file under the To Do node. The entries highlight parts of
the code where the user needs to make some changes, enabling them to quickly
complete the skeleton created by the wizard.

Code for the some of the remaining methods is not included in this listing since it
follows a similar pattern to addDoStartTag. The full code is available on the
accompanying Web site.

Compile the wizard and its supporting classes, place it in a JAR file along
with a manifest containing the following entry, move the JAR file to the
{JBuilder}/lib/ext directory, and restart JBuilder.

OpenTools-Wizard: wood.keith.opentools.wizards.jsptags.JSPTagWizard
Open the Object Gallery (File | New on the menu), go to the Web tab, and start

the new wizard. The result of running it with the data shown in Figure 24-1 is the
new class in Listing 24-3.

192 Part VI: The Wizard Framework

Listing 24-3. A new JSP tag class.

package wood.keith.gn.tags;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

*

A JSP 2.0 tag with the following characteristics
- it refers to a surrounding tag.

/

@author JSP Tag Wizard
@version 1.0 27 April 2004

* % X Gk ok %

/
public class TestTag extends TagSupport {

// Internal fields

/** @todo set default values */

private int size;

/** @todo replace OuterTag with the actual class name */
private OuterTag enclosingTag = null;

/**
* Save the value of size
*

* @param value the attribute value
74

public void setSize (int value) {
_size = value;

}

/**
Process the start tag for this instance.
When this method is invoked, the body has not yet been evaluated.

The doStartTag() method assumes that all property setter
methods have been invoked before this call.

@return EVAL BODY INCLUDE if the tag just evaluates and includes the
body content, or SKIP BODY if it does not want to process it
@throws JspException 1if a problem arises

R s

*/

public int doStartTag() throws JspException ({
try {
// Find enclosing tag for a nested tag
/** @todo replace OuterTag with the actual class name */

_enclosingTag = (OuterTag) findAncestorWithClass (
this, OuterTag.class);
if (_enclosingTag == null) {

throw new JspException ("This tag must appear within OuterTag");
}
JspWriter out = pageContext.getOut () ;
/** @todo specify any opening output value for this tag */
out.print ("tag value");
return SKIP BODY;
}
catch (IOException ex) {
ex.printStackTrace () ;
throw new JspException (ex.getMessage()) ;

Chapter 24: Java Object Toolkit 193

Summary

The Java Object Toolkit assists you in parsing existing Java code, in altering it,
and in generating entire new classes and files. It provides interfaces that mirror
the structure of Java files, classes, and their contents. You navigate down through
the different levels to find the items of interest, or create new classes, their
methods, and fields.

JBuilder uses JOT internally as the basis for the Component Modeling Tool
(see Chapter 20) and for many of its own wizards. Although wizards often draw
on JOT’s abilities, it can also be put to good use in other types of tools.

JOT is used in the Tag Library Descriptor wizard from last chapter to scan a
project for prospective tag and supporting classes, and to extract details about
them. In this chapter, the JSP Tag wizard helps you create these tag classes using
JOT. After asking the user for information about the required tag, the tool
generates an entire new Java class with the requested functionality, adds it to the
current project, and opens it in the Content Pane.

Several of the samples that come with JBuilder also use JOT to provide their
abilities.

WARNING

Because these samples are declared as belonging to the “Wizards” category in
their classes.opentools files, you must bring up the Object Gallery or the
Wizards menu before they appear on the Tools menu.

{JBuilder}/samples/OpenToolsAPI/jot/PackageTree/
PackageTree. jpx
This tool displays a window showing the class ancestry of every class in the
package of the currently active Java node. It appears on the Tools menu as
Package Tree and is disabled if the current node is not a Java source file in a
JBuilder project. The PackageTree and PackageTreeReader classes are
the ones that interact with JOT.

{JBuilder}/samples/OpenToolsAPI/jot/ReadingSource/
ReadingSource. jpx
Demonstrating how to read a Java source file, this tool reads the current Java
source file and opens a tab in the Message Pane to display details about. It
runs from the Reading Source option on the Tools menu, and shows general
statistics, information about the first class in the file, that class’ first field and
method, and then some of the top-level statements in that method.

WARNING

There is an error in the code for this tool. In the interrogateFile method it
retrieves the parameters for the first method in the first class (around line 190-
200). The correct code should read “firstMethod.getParameters().
length > 0”ratherthan “firstMethod.getParameters () .length < 0"

{JBuilder}/samples/OpenToolsAPI/jot/WritingSource/
WritingSource.jpx
Complementing the previous tool, this one generates a simple class that
illustrates several of the aspects of using JOT to write code. A JotWriting.
java file is added to the current project when the wizard is run from the
Writing Source option on the Tools menu.

194 Part VI: The Wizard Framework

; _Pla

I

W

t,,ffjmﬁ

| Systems

Although JBuilder provides a lot of functionality built—in, and allows you to
enhance its abilities through the OpenTools API, there are certain tasks that are
better preformed by external systems. These include the management of code
bases by a Version Control System and the running of an application server for
your EJBs and other J2EE components.

Several companies offer products in these two areas, and by tying into these
instead of trying to implement it all, JBuilder allows you to integrate best—of—
breed applications into its IDE, gaining the best of both worlds.

Chapter 27 looks at incorporating an external Version Control System into
JBuilder so that you can easily check code in and out, determine the status of
projects and individual classes, and compare different versions of a particular
source file.

Chapter 28 explains how to link an application server into JBuilder, allowing
you to easily deploy your application to it, to start and stop it, and to monitor
your code in that environment.

195

196 Part VIII: External Systems

Control

For any large project, and for many smaller ones, a Version Control System
(VCS) is an essential part of managing the code base. It lets you handle multiple
requests for a single object, ensuring that no changes are lost, as well as
providing a history of modifications that can be tracked over time. Because of the
complexity of the management task, and its ability to apply to many different
programming environments, most VCSs are standalone packages.

JBuilder integrates external VCS implementations into its IDE, so that you
can check files in and out immediately, review the status of all the files in a
project, or resolve conflicts between multiple versions of the one file. Each VCS
requires an adapter package that merges the abilities of that system into JBuilder,
passing user requests onto the actual external tool. Although this adapter package
is Java-based, the VCS itself can be a native executable. Currently JBuilder
supports CVS, Visual SourceSafe, ClearCase, and StarTeam out of the box.

Each adapter registers itself with JBuilder (within the “UI” category) so that
its abilities can be used. One of these is then chosen as the active VCS for each
project from the Team | Select Project VCS menu item as shown in Figure 27-1.
Following configuration of the VCS through a property page provided by the
adapter, the external VCS is ready to use from the Team menu (see Figure 27-2).

Figure 27-1. Select a VCS for a project.

(1, Select Project VC5

YWersion control syskem:

#78 Mone

&2 ClearCase
£ Cvs
E StarTeam

Yisual Sourcesalfe

| »

-

[K][Cancel][Help]

“Hap # 5

198 Part VIII: External Systems

To establish your own VCS interface, Figure 27-2. VCS options on the Team
you must create a VCS descendent and ~ menu.

register it with the VCSFactory class.
From your class, the IDE extracts the
VCS’s name and icon for selection, =
followed by its property page for P2 Configure CV3...
configuration. Once chosen, this class #9 Create Local Repasitary. ..
provides the actions that appear on the
Team menu and in the Project Pane’s

Team | Wizards Tools ‘Window Help Pu

Ef(Update "FirstOpenToal. java". ..

. h ol A n
context menu. These actions may O Commit "FirstopenTool java’". .
perform any kind of operation (48 Status for "FirstOpenTool java™. .
appropriate to this VCS. o8

Details about individual files are
provided through VCSFilelInfo,
VCSFileStatus, and Revision-
Info objects. These items are @@ CYS Watches 4
returned by methods in the other
classes, and are passed back as

3% Remove "FirstopenTool java". ..

5 Revert "FirstOpenTool java"...

Eff Update Project...

parameters to subsequent calls. BB
Project-wide ~ committing of [k Commit Browser. .
changes to the VCS is handled F
through the VCSComr.nitBrowser, a E‘ Sil'll: PrDjECt SEttingS »
standard dialog that lists the changed]
i?_; Y5 Administration b

files and allows selection of which
ones to actually apply. You would call B Pull Project From Cvs...
this dialog via the vCcsuUtils class
and pass it a CommitAction to use for the VCS interactions. VCSUtils
provides many other useful methods for integrating your VCS application.

The VCS is also integrated into the History tab that appears in the Content
Pane for all nodes. A list of all the revisions for a file are retrieved from the VCS
and displayed at the top of the Contents page, showing the revision number,
label, timestamp, and author. Then, as a version is selected, its content is loaded
and presented at the bottom of the page. The Info page is similar but shows the
VCS labels and full comment for the file instead of its content.

Comparing versions of a file is done on the Diff page of the history. Select the
revisions to compare from the lists at the top of the page, and the differences are
highlighted in the combined text at the bottom. This functionality is part of
JBuilder and does not rely on any differencing abilities of the underlying VCS.
All it needs is access to the source for the two revisions. It is not possible to
compare non-text files.

VCSFactory Class

The com.borland.primetime.teamdev.vcs.VCSFactory class maintains
the list of available VCSs within JBuilder. Each VCS implementation must
register itself with this class before it appears in JBuilder.

Its (all static) methods are:

Chapter 27: Version Control Systems 199

public static void addvCsS (VCS vcs);
Register a new VCS implementation with JBuilder (under the “UI”
category).
vcs is the interface to an external VCS.

public static String[] getNames();
Retrieve the list of names of registered VCSs. You receive an empty array if
none have been registered yet.

public static VCS getVCS (String vcsName) ;
Obtain a reference to a particular VCS interface, or null if it cannot be
found.

vcsName is the name of the VCS required.

VCS Class

For each VCS that wants to integrate with JBuilder, there must be a
corresponding com.borland.primetime.teamdev.vcs.VCS implement-
ation. This new class indicates the functionality provided by the underlying VCS
and supplies the connections to it.

The methods for this interface/class are listed below:

public void addToIgnorelList (Url[] filesAndDirsToIgnore);
Add entries to the list of files and directories ignored by the VCS.
filesAndDirsToIgnore is the list of files and/or directories to add.
public abstract String getDescription();
Provide a longer description of the VCS underlying this implementation.
public String getMergeConflictDividerMarker () ;
public String getMergeConflictEndMarker () ;
public String getMergeConflictStartMarker();
These methods return text strings that are used to delimit areas of conflict

during a merge process. By default the values are “=======""for the divide
marker, “>>>>>>>" for the end marker, and “<<<<<<<” for the start.
VERSION

None of the getMerge* methods are available in JBuilder 7.

public abstract String getName () ;
Obtain the display name for this VCS fronted by this implementation.
public WizardAction getNewProjectFromVCSWizardAction() ;
To support retrieving a project from the VCS from the Object Gallery or
Team menu, return an appropriate wizard action, or null (the default) if this
activity is not supported.
public abstract PropertyPage getProjectConfigPage (
JBProject project);
public abstract PropertyPage getProjectConfigPageNew (
Project project);
Return a property page used to configure this VCS. It appears within the
Repository dialog.
project is the project being configured.

200

Part VIII: External Systems

VERSION
The getProjectConfigPage method is not available in JBuilder 9 and 10,
where it has been replaced by the getProjectConfigPageNew method.

NOTE

Any property values captured by this page should be stored with the project as
automatic properties (see Chapter 7), using the project’'s setAutoProperty
method to save them and getAutoProperty to retrieve them. The category
(first parameter) should always be the standard vCS.CATEGORY value. The
property name must be unique across all instances, so include the name of your
VCS, like “SourceSafevCS user”.

project.setAutoProperty (
VCS.CATEGORY, SourceSafeVCS.SS USER, pnlConfig.getSourceSafeUserId());

public Map getProjectStatus (Project project);
Discover the status of each file in the project. The returned map contains
VCSFileInfo objects as keys representing the directories for the project.
Each matching value is then a List of more VCSFileInfo objects for each
file found there. Displaying the full status of the project with the
VCSCommitBrowser object invokes this method. You can trigger this
browser through the showProjectStatus method of the vCSUtils class.
project is the project to scan.

public UpdateAction getRefactorCheckoutAction (Url[] urls,
Component parentComponent, Changelistener listener);
Provide a checkout action for the refactoring viewer when a read-only file
needs to be updated, or nul1 if this activity is not supported.

urls is the list of files to checkout.

parentComponent is a parent to use for any dialogs.

listener is the object to notify following a checkout attempt.
VERSION

The getRefactorCheckoutAction method is only available in JBuilder 9
and 10.

public Vector getRevisions (Url url);
Find the revision history for a file. The returned list contains RevisionInfo
objects (described below).
url is the file to check for history.
public abstract byte[] getSource (Url url, RevisionInfo
rev) ;
Retrieve the source for a given revision of a file. The returned byte array may
contain text or binary data depending on the type of the file.
url is the file to retrieve.
rev indicates which revision is required.
public abstract ActionGroup getVCSContextMenuGroup () ;
Supply actions to add to the Project Pane popup menu for this VCS, or null
if none apply.
public abstract ActionGroup getVCSFileMenuGroup () ;
Obtain the file-based actions for the Team menu, or null if there are none.

Chapter 27: Version Control Systems 201

public abstract ActionGroup getVCSGlobalMenuGroup () ;
Get the actions not of a project- or file-based nature for this VCS, or null if
none apply.
public abstract Icon getVCSIcon();
Provide an icon to represent this VCS. It should be 20 x 20 pixels in size.
public abstract ActionGroup getVCSProjectMenuGroup () ;
Supply the project-based actions to use in the Team menu, or null if no
such actions apply.
public boolean isBinary(Url url);
Discover whether the VCS regards the file as containing binary data,
returning true (the default) if it does, or false if it does not. Often binary files
have no deltas (changes) recorded within the VCS.
url is the file to check.
public boolean isConfigureVCSMenuEnabled() ;
Determine whether the configuration menu entry for this VCS should be
enabled. By default it returns true.
public boolean isSelectVCSMenuEnabled() ;
Indicate whether the Select Project VCS menu item should be enabled,
returning true (the default) if so, or false if it should be disabled.

VERSION
The isSelectVCSMenuEnabled method is not available in JBuilder 7.

public abstract boolean isUnderVCS (Url url);
Returns true if the given file is under the control of the VCS, or false if it is
not.
url is the file to check.

public void notifyVCSSelected(Project project);
Receive notification that the given project has just been assigned to this VCS
through the Select Project VCS dialog.

project is the project affected.

VERSION
The notifyvCSSelected method is not available in JBuilder 7.

public void removeFromIgnoreList (Urll[]
filesAndDirsToStopIgnoring) ;
Remove entries from the list of files and directories ignored by the VCS.
filesAndDirsToStopIgnoring is the list of files and/or directories to
remove.

These fields are also defined in the interface:
public static final String CATEGORY;
The name of the property category for VCS entries.

public static final String PROP DELETE FROM REPO;
public static final String PROP_ IGNORE;
public static final String PROP RENAME IN REPO;

The names of properties.

VERSION
The PROP_RENAME IN REPO field is only available in JBuilder 9 and 10.

202 Part VIII: External Systems

Revisioninfo Class

The com.borland.primetime.teamdev.vcs.RevisionInfo class encap-
sulates details about a particular revision for a file. A vector of these objects is
returned by the getRevisions method of the vCsS interface for use in the
History tab in the Content Pane.

UNDOCUMENTED
The RevisionInfo class has not yet been documented.

Its methods are as shown here:

public RevisionInfo();

public RevisionInfo (String revNumber, long date, String
author, String comment, String label);
Create a new revision information object.

revNumber, date, author, comment, and label initialize the appropriate
fields below.

public String getAuthor();

public String getComment () ;

public long getDate();
Find out the author for a revision, any comment for it, or its timestamp.

public String getLabel () ;
Retrieve the label for this revision. A label is a tag that identifies a grouping
of revisions across different files. For example, it may indicate the latest
production release. If there are no labels an empty string is returned. The first
label is returned if there are several.

public String[] getLabels();
Retrieve the full set of labels for this revision, or an array with one empty
string if there are none.

public AbstractRevisionNumber getRevisionNumber () ;
Get the revision number for this revision.

public boolean isUnderVCS();
Return true if this file under the control of the VCS, or false if it is not.

public boolean isWorkingRevision () ;
Return true if this file is the revision currently being worked on, or false if it
is not.

public void setAuthor (String author);

public void setComment (String comment) ;

public void setDate(long timestamp) ;

public void setLabel (String label);

public void setlLabels (String[] labels);

public void setRevisionNumber (int revNumber) ;

public void setRevisionNumber (String revNumber) ;

public void setVCSFlag(boolean underVCS) ;

public void setWorkingRevision (boolean workingRev) ;
Establish values for the corresponding fields for this revision.

Chapter 27: Version Control Systems 203

Two constants are also defined for this class:
public static final String BUFFER REVISION;
public static final String FILE REVISION;
These identify revisions coming from the internal buffer or the file (working

copy).

AbstractRevisionNumber Class

Each revision has an identifying number associated with it as provided by
descendents of the com.borland.primetime.teamdev.vcs.Abstract-
RevisionNumber class. It is subclassed to provide the IntegerRevision-
Number (like 9), NumericRevisionNumber (like 1.4 or 2.1.3.3), and
StringRevisionNumber (like “~23~") classes from the same package.

Its methods are listed below:

public int compareTo (Object other);
Compare this revision with another and return a negative value if this object
is less than the other, zero if they are equal, or a positive value if this one is
greater. If the revision number objects are of different subclass types, their
precedence is compared (see getPrecendence). If this is equal they are
compared as string values. If the two objects are the same subclass then
doComparison is called to compare them.
other is the other revision to compare.

public abstract int doComparison (AbstractRevisionNumber
arn) ;
Compare two instances of a particular subclass of AbstractRevision-
Number, returning the same values as compareTo above.
arn is the other revision number.

public abstract int getPrecedence();
Return a value indicating how different revision number subclasses sort
relative to each other: strings come before numerics, which come before
integers.

public static AbstractRevisionNumber
getRevisionNumberInstance (String revNumber) ;
Generate an appropriate subclass instance for the given revision number.
This is IntegerRevisionNumber if the value starts with a digit and has no
periods, NumericRevisionNumber if it starts with a digit and contains a
period (.), or StringRevisionNumber otherwise.
revNumber is the revision number to represent.

public abstract String getRevisionString();
Present the revision number as a string value.

VCSFilelnfo Class

Details about each file within a project are returned from the vcCs class’
getProjectStatus method as com.borland.primetime.teamdev.vcs.
VCSFileInfo instances.

204 Part VIII: External Systems

UNDOCUMENTED
Although this class does appear in the documentation, its methods have no
explanations.

This class’ methods are shown below:

public VCSFileInfo (VCSFileInfo info);

public VCSFileInfo (VCSFileStatus status);

public VCSFileInfo (Url url, VCSFileStatus status);
Create a new information object for a file.

info is another information object to copy.

status is the file status to wrap.

url is the file to which this status applies.
public String getComment () ;

Return any comment set for this file.
public File getFile();

Obtain a reference to the actual file to which this information applies.
public String getName () ;

Retrieve the name of the file represented by this object.
public VCSFileStatus getStatus();

Find the status of this file. The returned class is covered below.

public Url getUrl();
Get the file to which this information applies.
public void setComment (String comment) ;
Establish a comment for this file.
comment is the comment text.
public void setStatus (VCSFileStatus newStatus);
Update the status for this file. The parameter class is covered below.
newStatus contains the new settings.
public void setUrl (Url url);
Modify the file to which this information applies.
url is the new location of the file.

VCSFileStatus Class

Representing the different statuses applying to files managed by the VCS is the
com.borland.primetime.teamdev.vcs.VCSFileStatus class. It is
abstract, so must be subclassed by your implementation to provide appropriate
information.

Its methods are listed here:

public abstract String getDescription();
Get a textual description of the status.
public int getStatus();
Retrieve the status of this file. These values are defined by your
implementation and have no meaning outside of it.
public abstract Icon getStatusIcon();
Obtain an icon representing the file’s status.

Chapter 27: Version Control Systems 205

public abstract VCSFileActions getVCSFileActions();
Find the list of actions applicable to this file and its status. Return null if
none apply. The VCSFileActions class is not covered in this book.

public boolean isCommentRequired() ;
Discover whether a comment is required for any of the possible actions on
this file. The default is true.

public abstract boolean isModifiedInVCS() ;
Return true if this file has been changed in the VCS, or false if it is the same
as the last check out.

public abstract boolean isModifiedLocally();
Return true if this file has been modified locally (in JBuilder), or false if it
has not been touched since the last check in.

public abstract boolean isNew();
Return true is this is a new file, or false if it is not.

public void setStatus (int newStatus);
Update the status for this file. These values are defined by your
implementation and have no meaning outside of it.

newStatus is the new setting.

This field is also defined:

protected int status;
The current status of the file.

VCSUtils Class

The com.borland.primetime.teamdev.vcs.VCSUtils class provides

several utility methods that you can use in your VCS implementation, and in

other OpenTools.
Its methods are all static, as shown below:

public static void addPersonalIgnoreFiles (Url[]
ignoreFilesAndDirs) ;

public static void addPersonalIgnoreFiles (Url[]
ignoreFilesAndDirs, Project project);
Add a list of files and/or directories to be ignored during VCS processing.
These are saved in the local project file (.1local extension) and so only
apply to this machine. Use addTeamIgnoreFiles to share the list of
excluded files, and removePersonalIgnoreFiles to delete entries.

ignoreFilesAndDirs is the list to ignore.
project is the project to apply the list to. The active project is used if this is
not specified.
VERSION
The versions of these methods that take a Project reference are not available
in JBuilder 7.

Part VIII: External Systems

public static void addTeamIgnoreFiles (Url[]
ignoreFilesAndDirs) ;

public static void addTeamIgnoreFiles (Url[]
ignoreFilesAndDirs, boolean justModifyProjectFile);

public static void addTeamIgnoreFiles (Url[]
ignoreFilesAndDirs, boolean justModifyProjectFile,
Project project);
Add a list of files and/or directories to be ignored during VCS processing.
These are saved in the project file (. jpr or .jpx extension) and apply to all
users. Use addPersonallIgnoreFiles for private excluded files, and
removeTeamIgnoreFiles to delete entries.

ignoreFilesAndDirs is the list to ignore.

justModifyProjectFile is true to only change the project file locally, or
false (the default) to also commit the alterations to the VCS.

project is the project to apply the list to. The active project is used if this is
not specified.

public static boolean checkProjectLocal (Url url);
Return true if this Url points to the project local file (““. local” extension).

url is the file to test.

VERSION
The checkProjectLocal method is only available in JBuilder 9 and 10.

public static void createBackupAndOutputDirs () ;
Create the backup and output directories for the active project if they do not
already exist.

public static boolean doesProjectTreeNeedRefreshed() ;
This method is called by the Commit Browser to determine whether the
Project Tree needs to be refreshed, returning true if it does, or false if it does
not.

VERSION
The doesProjectTreeNeedRefreshed method is only available in JBuilder
10.

public static void fixConflictsForEjbGrpXmlSource (File
conflictFile, MessageCategory category);
Process conflicts resulting from a merge action on a file, and display progress
in the Message Pane.

conflictFile is the EJB group file that contains conflict markers arising
from a merge operation.

category identifies the tab in the Message Pane to write to.

VERSION
The fixConflictsForEjbGrpxXmlSource method is not available in JBuilder
7.

public static void fixConflictsForJavaSource (File
conflictFile, MessageCategory category);
Process conflicts resulting from a merge action on a file, and display progress
in the Message Pane.

Chapter 27: Version Control Systems 207

conflictFile is the Java source file that contains conflict markers arising
from a merge operation.
category identifies the tab in the Message Pane to write to.

public static VCS getActiveVCS();
Obtain a reference to the current VCS, or null if there is none specified, or
if the edition of JBuilder does not permit access to the VCS.

public static String getActiveVCSName () ;

public static String getActiveVCSName (Browser browser) ;
Returns the name of the current VCS, or nul1 if none is specified.
browser is the browser to use to find the project. The active browser is
examined if not specified.

public static Url getBackupUrl (Url url);

public static Url getBackupUrl (Url url, JBProject project);

public static Url getBackupUrl (Url url, Project project);
Find the location for a backup of a file within a project.

url is the file from the source path to find the backup for.
project is the project to locate the file within. If not specified, the active
project is used.

VERSION

The getBackupUrl method that takes a Project parameter is only available
in JBuilder 8 and up, replacing the version that takes a JBProject reference.

public static FileNode getBrowserActiveNode () ;
Get a reference to the file currently displayed in the active browser, or null
if there is no file, or it is not a FileNode instance.

public static Url[] getExcludedPaths();

public static Url[] getExcludedPaths (Project project);
Obtain a list of all the shared excluded paths for a project. Use
getPersonalExcludedPaths to find any local paths. Also see
addTeamIgnoreFiles and removeTeamIgnoreFiles.
project is the project to examine, or the active project if not specified.

public static String[] getFilesNeededByVCS() ;
Retrieve a list of the names of files needed by the VCSs. These include files
that record versions on the local machine.

public static Vector getLocalRevisions (FileNode fileNode) ;
Discover what revisions of a file are stored locally. The returned vector
contains RevisionInfo objects.
fileNode is the node to find backups for.

public static String getPathRelativeToProjectDirectory (
Browser browser, Url url);
Find the relative path from the project’s base directory to a given file.

browser is the active browser.
url is the file to locate.

208

Part VIII: External Systems

public static Url[] getPersonalExcludedPaths () ;

public static Url[] getPersonalExcludedPaths (Project
project);
Obtain a list of all the private excluded paths for a project. Use get-
ExcludedPaths to find any local paths. Also see addPersonalIgnore-
Files and removePersonalIgnoreFiles.
project is the project to examine, or the active project if not specified.

public static String getRelativePath (Url parent, Url
child);
Find the relative path from one Ur1l to another.
parent is the base Ur1l to start the path from.
child is the destination for the relative path.

public static FileNode[] getSelectedNodesInProjectPane();
Obtain a list of the nodes currently selected in the Project Pane.

public static boolean handleOldStyleProjects (Component
parentComponent, JBProject project);
Deal with converting old style JBuilder projects (.3pr extensions) to the
newer format (. jpx extension). The project is inspected, and if it is the old
style, the user is prompted to convert it to the new style. A true value is
returned if the project was converted after user confirmation, or if it was
already in the new style. Otherwise false is returned.
parentComponent becomes the owner for any dialog that appears. It may
be null.
project is the project to examine and convert if necessary.

public static boolean isBinaryFileNode (Class clazz);
Determine whether a class represents a binary file. It returns false if it
descends from TextFileNode, or true otherwise.

clazz is the class to inspect.

NOTE
In JBuilder 9 and 10 you can register additional class types to ignore as binary —
see registerSourceClass.

public static boolean isFileType (File file, String
fileType);
Discover whether a file is of a particular type with this method, which returns
true if it is, or false if it is not.
file is the file to examine.

fileType is the extension of the type of file being checked (without any
period).

public static boolean isInProjectDirectory(Url file);
Returns true if the specified file is in the same directory as the project file
(.jpr or .jpx extension), or false it if is not.
file is the file to examine.

public static boolean isVCSFileOrDir (String fileOzrDir);
Determine whether a given file or directory is one registered as being
reserved for use by the VCS (see the registerFileOrDirNeededByVCS
method), returning true if it is reserved, or false if not.

Chapter 27: Version Control Systems 209

fileOrDir is the name of the file or directory to test.

VERSION
The isVCSFileOrDir method is not available in JBuilder 7.

public static void makelocalBackup (Url file, int
backupCount) ;
Make a backup of a file, with a specified number of historical copies.

file is the file to backup.
backupCount is the number of historical copies to retain.
TIP

Use the EditorPropertyGroup.BACKUP LEVEL global property to find the
system setting for the number of backups to make.

public static void notifyProjectTreeHasBeenRefreshed() ;
This method is called by the Commit Browser to notify that the project tree
has been refreshed.

VERSION
The notifyProjectTreeHasBeenRefreshed method is only available in
JBuilder 10.

public static void refreshHistoryPane();

public static void refreshHistoryPane (Url url);
Refresh the history pane because a label or branch has been added to the
repository (first version), or a new revision of a file has been added or
updated (second version).

url is the file that has been committed.

VERSION
The refreshHistoryPane methods are only available in JBuilder 9 and 10.

public static void registerFileOrDirNeededByVCS (String
fileOrDirName) ;
Register the name of a file or directory used by the VCS, and so should be
ignored during normal file processing.

fileOrDirName is the name of the reserved file or directory.

VERSION
The registerFileOrDirNeededByVCS method is not available in JBuilder 7.

public static synchronized void registerSourceClass(Class
clazz);
List additional class types that are treated as source files. These types return
false from the isBinaryFileNode method.

clazz is the class type that represents a source file type.

VERSION
The registerSourceClass method is only available in JBuilder 9 and 10.

210

Part VIII: External Systems

public static boolean removeFile (Browser browser, Url
file);
Delete the file from the browser and on disk, returning true if successful, or
false if not.

browser is the browser to clear out.
file is the file to delete.

public static void removePersonalIgnoreFiles (Url[]
ignoreFilesAndDirs) ;

public static void removePersonalIgnoreFiles (Url[]
ignoreFilesAndDirs, Project project);

public static void removeTeamIgnoreFiles (Url[]
ignoreFilesAndDirs) ;

public static void removeTeamIgnoreFiles (Url[]
ignoreFilesAndDirs, Project project);
Delete files and/or directories that were previously marked to be ignored (see

addPersonallgnoreFiles and addTeamIgnoreFiles).
ignoreFilesAndDirs is the list to not ignore any more.
project is the project to remove the list from. The active project is used if
this is not specified.

VERSION

The removePersonalIgnoreFiles and removeTeamIgnoreFiles methods
that take a Project reference are not available in JBuilder 7.

public static void setStatusText (String text, Color color);
public static void setStatusText (String text, int type);
Send a new message to JBuilder’s Status Pane.
text is the text to display.
color is the color to use for this text.

type is one of TYPE NORMAL, TYPE WARNING, or TYPE ERROR from the
StatusView class, indicating what format to use for the message.

WARNING

The setStatusText method that takes a Color parameter has been
deprecated in JBuilder 9 and 10 in favor of the other version. The version that
takes an integer parameter is not available in JBuilder 7.

public static void showProjectStatus (Browser browser,
CommitAction checkinAction);
Display a dialog to allow the user to examine the status of all updated files in
the project and to commit changes to the underlying VCS. The dialog is an
instance of the VCSommitBrowser class, and is shown in Figure 27-3.
browser is the browser to work with.

checkinAction is the action for a particular VCS that performs the check
in of the selected files. See the next section for more details.

Chapter 27: Version Control Systems 211

Figure 27-3. Preparing to commit changes to the project.

@Cnmmit Browser

? To commit all changes press the "Commit” butkon, To disregard a file, select the "MNo ackion” item From the dropdown list in the
firsk column, Use the file entry's context-menu to perform its action immediately,

rCnmmits rFile Inchide Lists

Al Pl List : Action | Status T | File Mame
& FirstoT ¢ | Commit * |35 Changed in workspace |FirstOpenTaoal java
Surmmaryy comment: Repositary Source I/Workspace Diff I/Repositnry Ejiff I/Complete [ofi
Changed menu Individual Camment r Warkspace Source
tewt :
A7 Add an entry to the Tools menu
off JBuilderMenu. GROUP_Tools. add(new Updatedction(”G'day™)
= JBuilderMeru. GROUP_Tools.add(new Updatedction|"Welcome™)
public void actionPerformed(dctionEvent event) |
JOntinnPans i rr
[}]
-_A‘_v_. FirstOpenT... |Diff fram 1.1.1.1 ka File |One difference block Found, | 321 | -

I Commit: I[Close][Help J

public static void showVcsConfigurationDialog() ;
Bring up the VCS configuration page in a dialog. This page may not allow
updates, or may not be shown at all, depending on the VCS selected.

CommitAction Class

The abstract com.borland.primetime.teamdev.vcs.CommitAction class
lets you define the operations necessary to commit changes to the VCS after files
are selected in the VCSCommitBrowser. You pass an object of this type to the
showProjectStatus method of the vCSUtils class to let the user review the
current situation and perform bulk operations on the VCS.
Its methods are shown below:
public void cancelOperation();
If the commit can be cancelled (see isCancellable) then this method must
perform that activity, stopping the performAction method. In this class
the method does nothing.

Y VERSION
The cancelOperation method is only available in JBuilder 9 and 10.

public abstract String getErrorMessage () ;
Supply an error message when the commit processing did not successfully
finish.

public PropertyPage getPropertyPage () ;
Provide a custom property page (see Chapter 7) for the Commit Browser, or
null (the default) if there is none.

212 Part VIII: External Systems

VERSION
The getPropertyPage method is only available in JBuilder 9 and 10.

public boolean isCancellable();
Return true if the commit may be cancelled, or false (the default) if it cannot.
If the former, then you must override the cancelOperation method to
actually halt the commit.

VERSION
The isCancellable method is only available in JBuilder 9 and 10.

public abstract void performAction (VCSFileInfol]
fileInfos);

Update the VCS as indicated by the user’s selections.
fileInfos is the list of files to process.

public abstract void setRunnerListener (
OutputRunnerListener listener);
Attach a listener to the output from this action. The parameter class is not
covered in this book, but captures output to standard output and error for
later processing.

listener is the object to inform about any output.

public abstract boolean wasCommitSuccessfull (),
Returns true if the commit process completed successfully, or false if it did
not.

WARNING
Note the spelling error in Successfull in this method’s name.

SourceSafeVCS Example

[lustrating how you can interface with an external VCS, David Brouse provides
an OpenTool that talks to Visual SourceSafe (VSS). This VCS from Microsoft is
commonly used on Windows platforms and is accessible through a command-
line interface. The tool has a property page to establish a link with VSS and then
adds several actions to both the Team menu and the popup Project Pane context
menu. Through these actions you can perform all the usual VCS actions (except
for difference).

NOTE

Support for Visual SourceSafe is built into JBuilder from version 5 onwards, but
only in the Enterprise edition. David Brouse has also updated his OpenTool to
access SourceSafe through its native API and is selling this version. He is no
longer supporting the version shown here.

BIO

David Brouse has been in software development for 13 years. The last six years
he has been designing and implementing n-tier web applications in Java. He is
currently employed as a software engineer. He started the company Devious
Bard Software (http://www.deviousbard.com) to sell some products that he
has developed in his free time. The first product up for sale is his Native Source
Safe Open Tool for JBuilder.

Chapter 27: Version Control Systems 213

Although there are many classes that make up the tool, the main one is
SourceSafeVvCs, as shown in Listing 27-1. It extends the abstract vCS class and
overrides the methods that implement the VCS functionality. In its OpenTools
initialization routine it registers an instance of itself with the VCSFactory class.
Once it is known to the system, this VCS can be assigned to a project via the
Team | Select Project VCS menu option (see Figure 27-4). The name and icon
come from the getName and getVCSIcon methods.

Figure 27-4. Selecting the new SourceSafe VCS.

Chi5elect Project VES Ei |

Version control system:
¢ None -
L,j Visual SourceSafe
|__| SourceSafeVCs
£ CVS

z]
L ClearCase

4]

oK Cancel | | Help |

Listing 27-1. SourceSafe OpenTool.

package com.deviousbard.ssvcs;

import com.borland.primetime.teamdev.vcs.*;
import com.borland.primetime.teamdev.frontend.*;
import com.borland.primetime.util.runner.*;
import com.borland.primetime.properties.PropertyPage;
import com.borland.primetime.node.*;

import com.borland.primetime.ide.*;

import com.borland.primetime.vfs.Url;

import com.borland.primetime.actions.ActionGroup;
import com.borland.jbuilder.node.JBProject;
import com.borland.primetime.ui.*;

import java.util.*;

import javax.swing.*;

import java.io.*;

import com.borland.jbcl.layout.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.*;

import com.borland.jbuilder.*;

import com.borland.primetime.*;

import com.deviousbard.opentool.util.*;

import java.text.*;

public class SourceSafeVCS extends VCS
{
public static final String SS EXE = "SourceSafeVCS exe";
public static final String SS MAPPINGS = "SourceSafeVCS mappings";
public static final String SS USER = "SourceSafeVCS user";
public static final String SS PASSWORD = "SourceSafeVCS password";
public static final String SS AUTH REQ = "SourceSafeVCS authreq";
public static final String SS COMMAND OUTPUT =
"SourceSafeVCS commandOutput";
public static final String SS HIST REV = "SourceSafeVCS histRev";

214 Part VIII: External Systems

SourceSafeVCSLogWriter log = null;

GetFileDialog getFileDialog = null;
CheckoutFileDialog checkoutFileDialog = null;
CheckinFileDialog checkinFileDialog = null;
UndoCheckoutFileDialog undoCheckoutFileDialog = null;
AddFileDialog addFileDialog = null;
MultiFileActionDialog multiFileActionDialog = null;
ProjectListDialog projectListDialog = null;

SimpleDateFormat df = new SimpleDateFormat ("MM/dd/yy hh:mma") ;

private Node[] nodes = null;
private String msg = null;

public SourceSafeVCS () {
try {
log = new SourceSafeVCSLogWriter () ;
}
catch (IOException ioe) {
}

try {
JbInit () ;
}
catch (Exception e) {
e.printStackTrace () ;
}
}

/**
* Register the SourceSafeVCS with the VCS Factory. This will make
* the class available in the Team drop-down list.
R4
public static void initOpenTool (byte major, byte minor) ({
// VCS support was added starting from JBuilder 4
if (major < 4) {
return;
}
VCSFactory.addVCS (new SourceSafeVCS()) ;
}

/**
* Return the property page to display when the user clicks
* on the Team tab.
74
public PropertyPage getProjectConfigPage (JBProject project) {
return (new ConfigPage (project));
}

public boolean isUnderVCS (Url url) {
JBProject prj =
(JBProject)Browser.getActiveBrowser () .getActiveProject () ;
String auth="";
String ssExe = prj.getAutoProperty (VCS.CATEGORY, SS EXE) ;
String ssProjectFile =
this.getSourceSafeProjectFile (url.getFileObject (), prj):;
String ssUser = prj.getAutoProperty (VCS.CATEGORY, SS USER);
String ssPass = prj.getAutoProperty (VCS.CATEGORY, SS PASSWORD) ;
String ssAuthRequired =
prj.getAutoProperty (VCS.CATEGORY, SS_AUTH REQ) ;
if (ssAuthRequired.equals ("TRUE")) {
auth = " -Y" + ssUser + "," + ssPass + " ";
}
ModifiedShellRunner shellrunner = new ModifiedShellRunner () ;
String command = "\"" + ssExe + "\"" + " Status " + "\"" +
ssProjectFile + "\" -I-Y " + auth;
if (prj.getAutoProperty (VCS.CATEGORY,
SourceSafeVCS.SS COMMAND OUTPUT) .equals ("TRUE"))

Chapter 27: Version Control Systems 215

shellrunner.enableMessageViewOutput (true) ;
shellrunner.run (command) ;
if (prj.getAutoProperty (VCS.CATEGORY,
SourceSafeVCS.SS COMMAND OUTPUT) .equals ("TRUE"))
shellrunner.enableMessageViewOutput (false) ;
if (shellrunner.getStderr().size() > 0)
return false;
for (Iterator iterator = shellrunner.getStdout () .iterator();
iterator.hasNext ();) {
String message = (String)iterator.next();
if (message.
indexOf ("is not an existing filename or project") > 0)
return false;
}
return true;

}

public byte[] getSource (Url url, RevisionInfo revInfo) {
SourceSafeRevisionInfo ssRevInfo = (SourceSafeRevisionInfo)revInfo;
JBProject prj =
(JBProject)Browser.getActiveBrowser () .getActiveProject () ;
String ssExe = prj.getAutoProperty (VCS.CATEGORY, SS EXE) ;
String ssUser = prj.getAutoProperty (VCS.CATEGORY, SS USER);
String ssPass = prj.getAutoProperty (VCS.CATEGORY, SS PASSWORD) ;
String ssAuthRequired =
prj.getAutoProperty (VCS.CATEGORY, SS_AUTH REQ) ;
String auth="";
if (ssAuthRequired.equals ("TRUE")) {
auth = " -Y" + ssUser + "," + ssPass + " ";
}
File tempFile = null;
try {
tempFile = File.createTempFile ("SourceSafeVCS", null);
}
catch (IOException ioe) {
}
String path = tempFile.getParent();
tempFile.delete () ;
String fileName =
url.getFile () .substring(url.getFile().lastIndexOf('/') + 1);
String mappedPath = this.getMappedPath (url.getFileObject (), prj);
String fileDir = url.getFileObject () .getParent () ;
String filePath = path + "\\" + fileName;
int commandCount = 3;
String[] commands = new String[commandCount];
String drive = path.substring(0,2);

commands [0] = drive;
commands[1] = "cd " + "\"" + path.substring(2) + "\"";
commands[Z] — n\nn + ssExe + n\nn + " Get " + n\nn 4L

ssRevInfo.getProjectFile() + "\" -I-Y -GWR -V" +
ssRevInfo.getSourceSafeRevision () + auth;
ModifiedShellRunner shellrunner = new ModifiedShellRunner () ;
if (prj.getAutoProperty (VCS.CATEGORY,
SourceSafeVCS.SS COMMAND OUTPUT) .equals ("TRUE"))
shellrunner.enableMessageViewOutput (true) ;
shellrunner.run (commands) ;
if (prj.getAutoProperty (VCS.CATEGORY,
SourceSafeVCS.SS COMMAND OUTPUT) .equals ("TRUE"))
shellrunner.enableMessageViewOutput (false) ;
tempFile = new File (filePath);
BufferedReader reader = null;
String line = null;
StringBuffer sourceFile = new StringBuffer();

try {
reader = new BufferedReader (new FileReader (tempFile)) ;
while ((line = reader.readLine()) !'= null) {

sourceFile.append (line) ;
sourceFile.append ("\n") ;
}
reader.close() ;

216 Part VIII: External Systems

tempFile.delete () ;
}
catch (FileNotFoundException fnfe) {
System.out.println ("Could not find file: " + fnfe);
}
catch (IOException ioe) {
System.out.println ("Could not read File: " + ioe);
}
return sourceFile.toString () .getBytes();

}

public java.util.Map getProjectStatus (Project proj) {
JBProject prj =
(JBProject)Browser.getActiveBrowser () .getActiveProject () ;
FileScanner scanner = new FileScanner ((JBProject)proj);
scanner.scan() ;
return null; //scanner.getFileChanges();

}

public VCSBrowserContextActionProvider
getVCSBrowserContextActionProvider () {
return null;

}

public boolean isBinary(Url url) {
String extensions = ".gif.jpg.jpeg.jar.zip.au.wav.midi";
return extensions.indexOf (url.getFileExtension()) != -1;

}

public String getName () {
return "SourceSafeVCS";

}

public String getDescription() {
return "A sample VCS implementation";

}

public Icon getVCSIcon() {
return BrowserIcons.ICON_FOLDER;

}

public ActionGroup getVCSProjectMenuGroup () {
JBProject prj =
(JBProject)Browser.getActiveBrowser () .getActiveProject () ;
String ssExe = prj.getAutoProperty (VCS.CATEGORY, SS EXE) ;
String ssUser = prj.getAutoProperty (VCS.CATEGORY, SS USER);
if (ssExe == null ssExe.equals("")
ssUser == null ssUser.equals("")) {
return null;
}
String ssPass = prj.getAutoProperty (VCS.CATEGORY, SS PASSWORD) ;
String ssAuthRequired =
prj.getAutoProperty (VCS.CATEGORY, SS_AUTH REQ) ;
if (ssAuthRequired.equals ("TRUE")) {
if (ssPass == null ssPass.equals("")) {
return null;
}

}
ActionGroup group = new ActionGroup () ;
group.add (Actions.CREATE PROJECT) ;
group.add (Actions.GET_ PROJECT) ;
return group;

}

public ActionGroup getVCSFileMenuGroup () {
JBProject prj =
(JBProject)Browser.getActiveBrowser () .getActiveProject () ;
String ssExe = prj.getAutoProperty (VCS.CATEGORY, SS EXE) ;
String ssUser = prj.getAutoProperty (VCS.CATEGORY, SS USER);

Chapter 27: Version Control Systems 217

if (ssExe == null ssExe.equals("")
ssUser == null ssUser.equals("")) {

return null;
}
String ssPass = prj.getAutoProperty (VCS.CATEGORY, SS PASSWORD) ;
String ssAuthRequired =

prj.getAutoProperty (VCS.CATEGORY, SS_AUTH REQ) ;
if (ssAuthRequired.equals ("TRUE")) {

if (ssPass == null ssPass.equals("")) {

return null;

}
}
ActionGroup aGroup = new ActionGroup () ;
aGroup.add (Actions.ADD FILE);
aGroup.add (Actions.CHECKIN FILE) ;
aGroup.add (Actions.CHECKOUT FILE) ;
aGroup.add (Actions.UNDO_CHECKOUT_ FILE) ;
aGroup.add (Actions.GET_FILE) ;
aGroup.add (Actions.STATUS FILE);
return (aGroup) ;

}

/** Always return true */
public boolean isConfigureVCSMenuEnabled() {
return true;

}

/**
* Return the list of actions that will be presented in the context
* menu in the project pane.
74
public ActionGroup getVCSContextMenuGroup () {
// Code removed — similar to getVCSProjectMenuGroup
}

public DeleteDialoglInterface getDeleteDialog() {
return null;

}
// UI and utility code removed

public Vector getRevisions (Url url) {
Vector revs = new Vector();
try {
JBProject prj =
(JBProject)Browser.getActiveBrowser () .getActiveProject () ;
File workFile = url.getFileObject () ;
String ssExe =
prj.getAutoProperty (VCS.CATEGORY, SourceSafeVCS.SS EXE);
String ssUser = prj.getAutoProperty (VCS.CATEGORY,
SourceSafeVCS.SS USER) .toLowerCase () ;
String ssProjectFile = getSourceSafeProjectFile (workFile, prj):
ModifiedShellRunner shellrunner = new ModifiedShellRunner () ;
String auth = "";
String ssPass =
prj.getAutoProperty (VCS.CATEGORY, SourceSafeVCS.SS PASSWORD) ;
String ssAuthRequired =
prj.getAutoProperty (VCS.CATEGORY, SourceSafeVCS.SS AUTH REQ);
if (ssAuthRequired.equals ("TRUE")) {
auth = " -Y" + ssUser + "," + ssPass + " ";
}
String[] commands = new String[l];
String ssHistRev =
prj.getAutoProperty (VCS.CATEGORY, SourceSafeVCS.SS HIST REV);
commands [0] = "\"" + ssExe + "\"" + " History " + "\"" +
ssProjectFile + "\" -L-" + auth;
if (prj.getAutoProperty (VCS.CATEGORY,
SourceSafeVCS.SS COMMAND OUTPUT) .equals ("TRUE"))
shellrunner.enableMessageViewOutput (true) ;
shellrunner.run (commands) ;

218

Part VIII: External Systems

if

if

(prj.getAutoProperty (VCS.CATEGORY,
SourceSafeVCS.SS COMMAND OUTPUT) .equals ("TRUE"))
shellrunner.enableMessageViewOutput (false) ;
(shellrunner.getStdout () .size() > 0) {
Iterator iterator =
// First couple of rows of output are throw away lines
String histRow = "";
Date changeDate = null;
int revCount = 0;
(iterator.hasNext () &&
revCount < Integer.parselnt (ssHistRev)) {

while

String
String

String date

String time =

revNumber =
who = "n.
;

— nn.
= ’

wn .
’

shellrunner.getStdout () .iterator () ;

wn .
’

String label = "";
String desc = "";
while (histRow.indexOf ("**") == -1) {
if (iterator.hasNext()) {
histRow = (String)iterator.next();

}
}

int versionIndex
if (versionIndex >= 8) {
revNumber
histRow.indexOf ("*", versionIndex) - 1).trim();

}

= his

= histRow.indexOf ("Version") + 8;

tRow.substring (versionIndex,

if (iterator.hasNext ()) {

hi

int userIndex

stRow =

(Stri

ng)iterator.next ();
histRow.indexOf ("User:") + 6;

who = histRow.substring (userIndex,

int dateIndex

int timeIndex

histRow.indexOf ("Date:", userIndex) - 1).trim();
= histRow.indexOf ("Date:") + 6;
date = histRow.substring(dateIndex,
histRow.indexOf ("Time:", dateIndex) - 1).trim();
= histRow.indexOf ("Time:") + 6;
time = histRow.substring(timelndex) .trim() + "m";

try {
changeDate = df.parse(
((date.length() < 8) ? "O0" + date : date) + " "
((time.length() < 7) 2 "0" + time : time));

}
ca

}

tch (ParseException pe) {
System.out.println ("Parse Error: " + pe);

changeD

ate =

new Date () ;

if (iterator.hasNext ()) {
(String)iterator.next () ;
bel = histRow.trim() ;

hi
la
}

stRow =

if (iterator.hasNext ()) {

hi
de
tr:

}
ca

}
ca

}
}

stRow = (String)iterator.next();

sc = null;

y |

int commentIndex = histRow.indexOf ("Comment:") +
desc = histRow.substring (commentIndex) .trim() ;
tch (ArrayIndexOutOfBoundsException aioobe) {
desc = "";

tch (StringIndexOutOfBoundsException sioobe) {

desc =

wn .
’

while (iterator.hasNext () && (histRow.indexOf ("**") ==
(String)iterator.next () ;
(histRow.indexOf ("**") == -1)

hi
if

stRow =

desc +=

"\n"

+ histRow.trim() ;

9¢

-1))

{

Chapter 27: Version Control Systems 219

}

SourceSafeRevisionInfo r = new SourceSafeRevisionInfo (
revNumber, changeDate.getTime (), who, desc, label);

r.setSourceSafeRevision (revNumber) ;

r.setProjectFile (ssProjectFile) ;

revs.add(r) ;

revCount++;

}

}

catch (Exception ex) {
log.writeLogEntry ("Error In History: " + ex);
ex.printStackTrace () ;

}

return revs;

// Helper code removed

private class FileScanner ({
private JBProject project = null;
private File projectDir = null;
private String projectParent = null;
private java.util.List fileChanges = new ArrayList();
private java.util.List sourcePaths = new ArrayList();
private int pparentLen=0;

private FileScanner (JBProject project) {
try {

this.project = project;
File projectDir = project.getProjectPath().getFileObject () ;
String sourcePath =

project.getProperty (JBProject.PROPERTY SOURCEPATH) ;
String projectPath = project.getProjectPath () .getFile () ;
StringTokenizer st = new StringTokenizer (sourcePath, ";");
while (st.hasMoreTokens()) {

String tmpSrcPath = st.nextToken () ;

String tmpPrjPath = projectPath;

int index = -1;
while ((index = tmpSrcPath.indexOf("../")) > -1) {
tmpPrjPath =
tmpPrjPath.substring (0, tmpPrjPath.lastIndexOf("/") - 1);

tmpSrcPath = tmpSrcPath.substring (index + 3);
}
sourcePaths.add (tmpPrjPath + "/" + tmpSrcPath);
}
}
catch (Exception ex) {
ex.printStackTrace () ;

}

public java.util.List getFileChanges () {
return fileChanges;

}

public void scan() {

for (Iterator i1 = sourcePaths.iterator(); i.hasNext();) {
String path = (String)i.next();
File f = new File (path);
scan (f) ;

}

public void scan(File path) {
try {
File[] list = path.listFiles();
int len = list.length;
for (int i=0; i<len; i++) {
// Skip status files

220

Part VIII: External Systems

if (list[i].isDirectory()) {
scan(list[i])

}

else {

String fname = list[i].getCanonicalPath();
// Ignore JBuilder and Source Safe Generated files
if (list[i].getName () .endsWith("~")
list[i].getName () .endsWith("jpx.local")
list[i] .getName () .endsWith ("scc")) {
continue;
}
else {
int status =
SourceSafeVCSUtils.getStatus (list[i], project);
Url url = new Url (list[i]);
if (SourceSafeVCSStatus.isNewFile (status)) {
// Added
fileChanges.add (new VCSFileInfo (url,
new RevisionStatus (RevisionStatus.STATUS NEW))) ;
continue;
} else if (SourceSafeVCSStatus.
isDifferentFromWorkFile (status)) {
// Modified
fileChanges.add (new VCSFileInfo (url, new
RevisionStatus (RevisionStatus.STATUS WSP CHANGE))) ;

continue;

}
// if (lastRev.compareTo (workRev) == 1) {
// // Modified in the repo
// mods.add (new VCSFileInfo (url,new
// RevisionStatus (RevisionStatus.STATUS REPO_CHANGE))) ;
// continue;
// }

}

}

catch (Exception ex) {
ex.printStackTrace () ;

}

}

Next you need to initialize the VCS by selecting the Team | Configure VCS menu
item. This option retrieves a property page from the getProjectConfigPage
method in this class and displays it to the user (as shown in Figure 27-5). For
VSS, the tool needs to know where to find the VSS program so that it can run it,
any user name and password that are required to access it, as well as other
optional information. These values are stored as automatic properties on the
project (see Chapter 7) under names held in this class.

Chapter 27: Version Control Systems

Figure 27-5. Configuring the SourceSafe VCS.

) I-"TII"J'J"' Yerzion Lontrol

cwinnfisystem32iss. exe |

] i % ’ ;‘2’&2['2% 1

$ o Part VIII: External Systems

Figure 27-6. The new Team menu.
Wizards JRefactory Tools Windi
8l Select Project VCS...

Finally, the various menu group
methods provide collections of
actions to add to the different
menus. getVCSFileMenuGroup
and getVCSProjectMenu-
Group go together to make up
the contents of the new Team
menu (see Figure 27-6), with the
isConfigureVCSMenuEnabled
method determining the state of
the standard Configure VCS item,
while getvCSContextMenu-
Group supplies the entries for the
Project Pane’s popup menu (see
Figure 27-7).

[% Add "classes.opentools™

‘ Checkin “classes.opentools™

h Checkout “classes.opentools”

ﬁ Undo Checkout “classes.opentools™
‘ Gel "classes.opentools™

Status "classes.opentools”

'Za Create project folder...

2 Get project files...

Figure 27-7. Popup options in the Project Pane.
SED & SourceSafe.jpx -

@ |gB) com.deviousbard ssves
& actionCellEditor java
& ActionComboBoxjava
& ActionComboBoxModel java
& ActionComboBoxRenderer java
& actionComboBoxTableMode'
& actions java
& add-check gif
ol add.gif
& addFileDialog.java
= checkin-check gif

Open
(=3 Add Files / Packages...
&8 Remove from Project
Rename “ActionComboBoxTableModel java"...

= checkin.gif I New Folder...
& CheckinFileDialog java) Close Project "SourceSafe.jpx”
& checkmark.gif
; Delete "ActionComboBoxTableModel.java™
= checkout-check.gif
= checkout gif 1 make
& CheckoufFileDialog java S Rebuild

& ConfigPage java
& ConfigPanel java

| & A

= create-project.gif ‘ Checkin
g CreateProjectDialog java Ry Checkout
DirectaryBrowserPanel java
Undo Checkout
& DirectoryMode java O 3 f -
= get-check.gif M Get
= getoir E' Status
"3 GetFileDialog java B By Muttiple File Actions...

Many of the remaining VCS methods follow a similar pattern. They retrieve the
VCS property values entered by the user, and combine these into a command line
that implements the requested action. The ModifiedShellRunner class (part
of this tool) submits the command to the operating system and returns its results

for interpretation by the calling method.

The tool is registered as part of the “UI” category, making it available as

soon as the IDE is displayed.

OpenTools-UI:

com.deviousbard.ssvcs.SourceSafeVCs

Chapter 27: Version Control Systems 223

Summary

Version Control Systems provide the much-needed management of multiple
demands on individual source files, and for histories of changes to these files.
They allow you to return to any previous version, compare it with another
version, and determine what changes were made and what effect that had on the
application. Typically VCSs exist as separate applications, since they may be
used in many different programming environments.

JBuilder provides access to several VCS implementations directly through its
IDE, allowing you to easily check files in and out, to extract and compare earlier
versions, and to review the status of the project. Currently, JBuilder supports
CVS, Visual SourceSafe, ClearCase, and StarTeam with built-in functionality.

You can write your own adapters to deal with other VCS implementations,
whether they are Java-based or not. As an example, the SourceSafe VCS tool
from David Brouse was presented, showing how to invoke a native application
via its command-line interface and interpret the results.

There is one JBuilder sample that illustrates the VCS API.
{JBuilder}/samples/OpenToolsAPI/VCS/samplevcs. jpx

This tool defines a fairly simple VCS, named SampleVCS, that just copies

the files under its care to a parallel directory structure. The root of that

structure is set as a property of the VCS for each project. Having the version
number appended to the file name of the copy identifies the different
revisions. This VCS stores additional for each revision in a separate

.comment file, and even supports check out and check in.

Another area where JBuilder needs to integrate with an external system is in
working with application servers. These servers provide a hosting environment
for Enterprise JavaBeans (EJBs) and other enterprise-level components.
Implementations are available from many different sources, from commercial
servers to open source efforts.

By integrating an application server with JBuilder, through an OpenTool
adapter, you can easily configure the server, deploy your EJBs, and run or debug
your application within the server, all from the JBuilder IDE. A particular server
can be associated with each project. In fact, in JBuilder 7 and up, you can define
a different server for each application server feature (such as EJB hosting,
servlet/JSP, naming services, etc.) for each project.

NOTE

The functionality described here is only available in the Enterprise editions of
JBuilder. Even then, certain additional classes are required to implement the
basic application server abilities. These classes come with the Borland
Enterprise Server that accompanies JBuilder and must be available on the
classpath before certain options are enabled.

Up to JBuilder 6, server adapters were extensions of the AppServer class, and
were registered with the AppServerManager class before they could be used.
Each one then identified itself, defined its capabilities, and provided numerous
details to enable its server to run. The DeploymentDescriptor class
encapsulated descriptors of the EJBs to be deployed to that server, and these were
created by a subclass of the AbstractDescriptorConversion class.
Meanwhile the EjbDeployer interface let you perform the actual transfer.

Application servers, as well as other enterprise—level tools, may have
property pages associated with them, allowing the user to configure the tools
from within JBuilder. The SetupManager class keeps track of these pages,
which are instances of the Setup class. Property pages (SetupPropertyPage)
may appear on a tab of their own in the surrounding dialog, or they may be
embedded within another page (NestingSetupPropertyPage) on a second set
of tabs.

Starting in JBuilder 7, the server API has been restructured to support
multiple, independent services from each server. You now extend the Server

224

Chapter 28: Application Servers 225

class to integrate your server with JBuilder, and register it with the
ServerManager class. Each server supports a number of services, identified by
Service.Type objects, through implementations of the Service class.
ServerLauncher instances provide the bridge between the services and the
runtime environment. The remaining processing is the same as for previous
versions.

The application server section of the OpenTools API is extensive; involving
many classes and interfaces. Only the main ones are covered in this book.
Several of the others are documented in the JBuilder online help; however, many
are not described at all.

NOTE

All the application server parts of the OpenTools APl come from the JBuilder
packages (as opposed to PrimeTime) since they deal with a topic specifically
related to Java.

JBoss Example

Throughout this chapter you will see snippets of code from the JBoss application
server adapter. The entire code is too large to include here, but is available on the
accompanying Web site.

JBoss is an Open Source, standards—compliant, application server implemented
in 100% Pure Java and distributed for free. With 150,000+ downloads per
month, JBoss is THE most downloaded web—app server, based on and extending
beyond the J2EE specification potential.

http://www.jboss.org

Under the leadership of Marcus Redeker, a group of developers has written a
JBuilder OpenTool to integrate JBoss into JBuilder. This tool is also open source
and is available from SourceForge (http://sourceforge.net/projects/
jboss—opentool/). It currently supports two versions of JBoss: 2.4.x and 3.x.

BIO

Marcus Redeker is currently a Senior Java Consultant at Gedoplan GmbH in
Bielefeld, Germany. He is a ‘Sun Certified Java Programmer’ and has been
teaching Java and J2EE technologies for over 3 years.

After receiving his masters in Computer Science and Economics in 1997,
Marcus relocated to New York City where he worked as a Senior Consultant for
three years, after which he returned to Germany.

Marcus has more than seven years of experience as a professional
programmer and is highly proficient in Object—Oriented technologies, Java and
Enterprise Java programming.

VERSION

The version presented here is designed for JBuilder 6. In JBuilder 7 and 8, this
tool is adapted through classes in the com.borland.jbuilder.server.
legacy package to allow it to interact with the new server framework.

ServerManager Class

The com.borland.jbuilder.server.ServerManager class was introduced
in JBuilder 7 to offer more functionality than the earlier AppServerManager

226

Part VIII: External Systems

one. It allows for individual services to be identified for each server and then to
supply those services through different servers within the one project. For
example, Tomcat could perform your JSP/servlet processing, while JBoss
handles the EJBs.

VERSION

The ServerManager class supercedes the AppServerManager class.
Although the latter class is still supported, the former should be used for new
server tools.

The methods (all static) of the ServerManager class are listed below:

public static synchronized void findServerPathSet (Server
server) ;
Connect a server with a ServerPathSet instance through this method. The
path set is created as necessary, and appears as <server name>.library
files in the . jbuildern directory in your home directory.
server is the server to examine.

public static Service findService(Service[] services,
Service.Type serviceType);
Search an array of services for one matching a specific type, returning the
first instance encountered, or null if none matched.

services is the list of services to scan.

serviceType is the service type of interest. See Service.Type for a list
of the standard types.

public static Service.Type[] getAvailableTypes();

public static Service.Type[] getAvailableTypes (boolean
exactMatch) ;
Retrieve a list of all the service types that are provided by at least one of the
registered servers, or an empty list if there are none.
exactMatch is true (the default) if the type must match precisely, or false if
some leeway is possible.

VERSION
Neither of the getAvailableTypes methods is available in JBuilder 7. The
version that takes a boolean argument is only available in JBuilder 9 and 10.

public static List getEnabledServers (boolean addNoneltem) ;
Obtain a list of all those servers that have been enabled through the Configure
Servers dialog, or an empty list if there are none. The returned list is
typically used in a GUI control to allow selection of a server.
addNoneItem is true to add a “<None>" item at the end of the list, or false
to exclude it. Having this value is useful to indicate that no server has been
chosen yet.

public static Server getlastRegisteredServer();
Find out which server was the last to have registered with this manager.

public static SkeletonServer getNoneServerItem();
Get a reference to the server object that represents the “<None>” item from
getEnabledServers. It is a singleton object.

Chapter 28: Application Servers 227

public static synchronized Server getPrimaryServer();
Identify the server required by JBuilder for certain actions. Currently this is
the latest version of the Borland Enterprise Server.

public static Server getServer (String fullName) ;
Retrieve a server wrapper via its name, or null if it cannot be found.

fullName is the full name of the desired server. If this matches a legacy
server name (see registerLegacyName) then an instance of the new server
is returned instead.

public static Server[] getServers();

public static Server[] getServers (String serverTypeld);
Obtain a list of all the servers, or only those with a particular server type
identifier, currently registered, or an empty array if there are none.

serverTypeld is the server to check.

VERSION
The getServers method that takes a string argument is only available in
JBuilder 9 and 10.

public static Service getService (Service.Type serviceType,
Server server);

public static Service getService (Service.Type serviceType,
Server server, boolean exactMatch);
Locate a service of a given type for a particular server, or null if no
matching item is found.

serviceType is the service type of interest. See Service.Type for a list
of the standard types.

server 1s the server to check.

exactMatch is true (the default) if the type must match precisely, or false if
some leeway is possible.

VERSION
The getService method that takes a boolean argument is only available in
JBuilder 9 and 10.

public static Servicel[] getServices (Server server);

public static Service[] getServices (Service.Type
serviceType) ;
Retrieve a list of all the services for a specific server or service type, or an
empty list if there are no matching items.

server or serviceType identify the search criterion for locating the
services.

public static Service.Type getServiceType (Class
serviceTypeClass) ;

public static Service.Type[] getServiceTypes|();

public static Service.Type[] getServiceTypes (Class
serviceTypeClass) ;

Get one, several, or all of the service types registered with this manager, or
null or an empty list if none can be found.

serviceTypeClass is the class of the service type to search for.

228

Part VIII: External Systems

VERSION
The getServiceTypes method that takes a Class argument is only available
in JBuilder 9 and 10.

public static synchronized void
registerCustomConfigurationPageFactory (
CustomConfigurationPageFactory factory, String
serverName, String serverVersion);

public static synchronized void
registerCustomConfigurationPageFactory (
CustomConfigurationPageFactory factory, String
serverName, String serverVersion, boolean
registerForAllServersWithSameTypeId) ;
Register a factory against a server to provide custom configuration pages for
the Configure Servers dialog. Multiple pages may be supplied through a
number of factories.

factory is the object that produces the configuration pages. This class is not
covered in this book.

serverName and serverVersion are the full name and version of the
server to register the factory with.

registerForAllServerWithTheSameTypeId — the name says it all.

VERSION
The registerCustomConfigurationPageFactory method that takes a
boolean argument is only available in JBuilder 9 and 10.

public static synchronized void registerJdkSupportProvider (
JdkSupportProvider jdkSupportProvider, String
serverName, String serverVersion);

public static synchronized void registerJdkSupportProvider (
JdkSupportProvider jdkSupportProvider, String
serverName, String serverVersion, boolean
registerForAllServersWithSameTypeId) ;
Use this method to associate a JDK instance with a server. If such a JDK
exists for a server, it is set for the project when switching to that server.

jdkSupportProvider is the object that locates the JDK when necessary.
This class is not covered in this book.

serverName and serverVersion are the full name and version of the
server to register the JDK against.

registerForAllServerWithTheSameTypelId — the name says it all.

VERSION
The registerJddkSupportProvider method that takes a boolean argument
is only available in JBuilder 9 and 10.

public static void registerlLegacyName (String legacyName,
String currentName) ;
Allow projects using old server versions to be automatically updated to the
new version through this method. For example, “Tomcat 3.0” is mapped onto
“Tomcat 3.3” in JBuilder 8.

legacyName is the name of the old server.

Chapter 28: Application Servers 229

currentName is the name of the new server to replace it with.

public static void registerServer (Server server);
Register a server implementation with the system. Its basic settings are
initialized to default values, unless the server has been previously configured
in JBuilder, in which case those values are retrieved. Finally, all the services
for the server are registered through a call to its registerServices
method.

server is the new server wrapper.

public static void registerService (Service service);
Tell the system about a new service provided by a server.

service is the new service.

public static void registerServiceType (Service.Type
serviceType) ;
Inform the system about a service type that may be provided by a server.
JBuilder defines the standard types (see Service.Type for a list of the
standard types), but you may add others as necessary. These appear as entries
in the Services list in the Project Properties dialog, Server tab.

serviceType is the new service type.

public static synchronized void registerTargeting(
AppServerTargeting targeting, String serverName, String
serverVersion) ;

public static synchronized void registerTargeting(
AppServerTargeting targeting, String serverName, String
serverVersion, boolean
registerForAllServersWithSameTypeId) ;
Associate an AppServerTargeting object (covered below) with a server
through this method. The targeter defines special build tasks for a server, and
assists in building custom deployment descriptors.

targeting is the targeter object to link to the server.

serverName and serverVersion are the full name and version of the
server to register the targeter for.

registerForAllServerWithTheSameTypeId — the name says it all.

VERSION

The registerTargeting method that takes a boolean argument is only
available in JBuilder 9. Neither of the registerTargeting methods is
available in JBuilder 10.

public static synchronized void save();
Save all changes for servers made through the Configure Servers dialog.
These appear as <server name>.library files in the .jbuildern
directory in your home directory.

public static boolean serviceAvailable (Service.Type
serviceType) ;

public static boolean serviceAvailable (Service.Type
serviceType, boolean exactMatch);

Discover whether any of the registered servers provides a particular service

through this method, which returns true if at least one does, or false if none
do.

230 Part VIII: External Systems

serviceType is the service type of interest. See Service.Type for a list
of the standard types.

exactMatch is true (the default) if the type must match precisely, or false if
some leeway is possible.

VERSION

Neither of the serviceAvailable methods is available in JBuilder 7. The
serviceAvailable method that takes a boolean argument is only available in
JBuilder 9 and 10.

public static boolean serviceSupported(Service.Type
serviceType, Server server);

public static boolean serviceSupported(Service.Type
serviceType, Server server, boolean exactMatch);

Determine whether a server supports a given service type, returning true if it
does, or false if it does not.

serviceType is the service type of interest. See Service.Type for a list
of the standard types.

server is the server to check.

exactMatch is true (the default) if the type must match precisely, or false if
some leeway is possible.

VERSION

The serviceSupported method is not available in JBuilder 7. The
serviceSupported method that takes a boolean argument is only available in
JBuilder 9 and 10.

This class also defines the fields shown below:

public static final String NONE NAME;
This is the name used to indicate no server.

public static final Comparator SERVER COMPARATOR;

public static final Comparator SERVICE COMPARATOR;

public static final Comparator SERVICE:TYPE_COMPARATOR;
These comparators let you determine the equality of servers (based on
getFullName ignoring case), services (based on their service type’s
getName ignoring case), and service types (based on getName ignoring
case) respectively.

Service.Type Class

The types of service that can be provided by a server are identified by instances
of the abstract com.borland.jbuilder.server.Service.Type class.
These types must be registered with the ServerManager through its
registerServiceType method within the “ServerServices” OpenTools
category. New services defined as descendents of Service (see below) should
include a corresponding Type descendent (also called “Type” by convention).
The standard types defined by JBuilder are ClientJarService.Type,
ConnectorService.Type, DeployService.Type, EjbService.Type,

JspServletService.Type, MessageService.Type, NamingService.
Type, SessionService.Type, and TransactionService.Type, all from

Chapter 28: Application Servers 231

the com.borland.jbuilder.server package, and JDataStoreService.
Type fromthe com.borland.jbuilder.server.bes package.

The methods to implement for this class are:
public void checkChildNodes (CheckTreeNode serviceTypeNode,

ServiceCheckTree tree, Project project, boolean
parentEnabled, Set enabledServices);

When the tree that displays type nodes is built, it calls this method to
determine if each node needs to have any children. If the given node does
need children, add them here as Service. Type-based nodes. Typically you
would not override this method.

serviceTypeNode is the service type node to check.

tree is the tree to which any new nodes are added.

project is the current project.

parentEnabled is true if the parent node is currently enabled, or false if it
is not.

enabledServices is the collection of currently enabled services for this
project.

VERSION
The checkChildNodes method is only available in JBuilder 9 and 10.

public abstract String[] getFeatureDefinition();
Identify the feature (property) that this implementation is associated with.
The two array values are the category and property names.

VERSION
The getFeatureDefinition method is only available in JBuilder 10.

public abstract Icon getIcon();
public abstract String getName () ;
Return the icon or name used to identify this service type. The icon should
only be 16 by 16 pixels in size.
public abstract String getPropertyKey () ;
Provide a value to be used as the key for any properties of this service.
public abstract int getSkuVersion();
Indicate which JBuilder edition (using the UpdateAction constants) is the
minimum required for this service to be enabled.

WARNING
The getSkuVersion method was deprecated in JBuilder 10 in favor of the
getFeatureDefinition method.

public boolean isDefaultEnabled();
If this service should be enabled by default, then return true (the default).
Otherwise return false.

public final boolean isEnabledForSku();
Determine whether or not this type is enabled for this edition of JBuilder,
returning true if it is, or false if it is not.

VERSION
The isEnabledForSku method is only available in JBuilder 9 and 10.

232 Part VIII: External Systems

public abstract boolean isRuntime () ;
Return true if this service runs within the server, or false if it runs as a
separate process, such as from the command line.

Service Class

The com.borland.jbuilder.server.Service class encapsulates the actual
services supplied by a server. These services are associated with a server through
its registerServices method, which is called as part of the registration of the
server itself.

UNDOCUMENTED
Although a page for the Service class exists in the documentation, it provides
very little detail on the class’ methods.

You derive classes specific to your server from the standard (abstract) ones
defined by JBuilder — ClientJarService, ConnectorService, Deploy-
Service, EjbService, JspServletService, MessageService, Naming-
Service, SessionService, and TransactionService, all from the
com.borland.jbuilder.server package, and JDataStoreService from
the com.borland.jbuilder.server.bes package.
The methods to implement are:
public Service (Server server);
Create a new service.
server is the server that provides this service.
protected void buildFeatureSet () ;
This protected method initializes the featuresSet field to contain a set of
the available features (getFeatures).
public void configurelLauncher (ServerLauncher launcher);
Prepare the launcher for this service. The default implementation does
nothing.
launcher is the launcher instance to be run. This class is covered below.
public Feature[] getAllAvailableFeatures();
public Feature[] getAllAvailableSpecFeatures();
Return a list of all the features or all the specification features for this
service. By default, NO FEATURES is returned.

VERSION
The getAllAvailableFeatures and getAllAvailableSpecFeatures
methods are only available in JBuilder 9 and 10.

public ModuleType getAssociatedModuleType ()
Provide the ModuleType associated with this service, or null (the default)
if there is no such object. The returned class is not covered in this book, but
is documented by Borland.

VERSION
The getAssociatedModuleType method is only available in JBuilder 10.

Chapter 28: Application Servers 233

public Feature[]
getAvailableSpecFeaturesForAssociatedModuleType (
Project project);
Return the list of specification features available for the module type
associated with this service (if there is one). By default the result of
getAllAvailableSpecFeatures is returned.

project is the current project.

VERSION
The getAvailableSpecFeaturesForAssociatedModuleType method is
only available in JBuilder 10.

public String getClientVmParameters () ;
Supply any additional JVM parameters required by the run configurations
generated by the Application, Test, and other wizards to allow their generated
code to talk to the server. By default it returns null, indicating that no extra
parameters are necessary.

VERSION
The getClientVmParameters method is only available in JBuilder 10.

public Node getCompanionNode (Node node) ;
Finds the companion node for the one given, being the other of the
EJBGRPFileNode (parent) or JarFileNode (child) given. Extend this in
your subclass for other nodes. The default implementation returns null.
node is the EJBGRPFileNode or JarFileNode to match.

public String getCustomizedRunDebugClassPath (String
currentClassPath) ;
Update the given class path to allow the service to be debugged. The default
implementation just returns the class path provided unchanged.

currentClassPath is the class path to customize.

VERSION
The getCustomizedRunDebugClassPath method is only available in
JBuilder 9 and 10.

public Feature[] getDefaultSupportedSpecFeatures();
Provide the list of specification features that a module using this service
supports by default. This implementation returns NO_ FEATURES, and so
should be overridden to supply a more meaningful list.

VERSION
The getDefaultSupportedSpecFeatures method is only available in
JBuilder 10.

public ServiceDependency[] getDependencies();
Return the list of services upon which this one relies. The default
implementation returns NO DEPENDENCIES.

protected Feature[] getFeatures();
Provide a list of the features supported by this service. By default,
NO FEATURES is returned. The com.borland.jbuilder.server.
Feature class provides a type-safe enumeration and is not otherwise
covered in this book.

234 Part VIII: External Systems

The features defined by the standard services are shown in Table 28-1.

Table 28—1. Standard service features
* indicates specification features

Service Feature

ConnectorService | CONNECTOR_1_0*
CONNECTOR_1_5*
EjbService CMP_1x_RELATIONS
COLLECTION_MULTI_OBJECT_FINDERS
EJB_1_0O*

EJB_1_1*

EJB_2 0O*
MESSAGE_DRIVEN_BEANS
MINIMAL_JARS
POOL_NAMES
PRIMITIVE_PRIMARY_KEYS
JspServietService | JSP_1_0*

JSP_1_1*

JSP_1 2%

JSP_1_3*

JSP_2 0*
SEARCH_FOR_UNUSED_PORT
SERVLET_2_1*
SERVLET_2 2*
SERVLET_2_3*
SERVLET_2 4*
SERVLET_INVOKER
USER_SPECIFIED_PORT

public PropertyPage getProjectPropertiesPage (Project
project);
Supply a property page for the project, or null (the default) if there are no
settings. This page appears on the Server tab in the Project Properties dialog.

project is the current project.

public PropertyPage getRunConfigPropertyPage (
ProjectServerModel model, Map propertyMap) ;
Provide a property page to configure this service, or null if there is none
(the default). This page appears in the Runtime Configuration Properties
dialog accessible from the Run tab in the Project Properties dialog.
model contains details about the servers and services attached to a project.
This class is not covered in this book.

propertyMap is the map of property values (see MapProperty in Chapter
7).

Chapter 28: Application Servers 235

public Server getServer();
Retrieve the server with which this service is associated (set during
construction).

protected static Service getService (Project project, Class
serviceTypeClass) ;

protected static Service[] getServices (Project project,
Class serviceTypeClass);
Find the service object(s) that provides a particular service within a project.
Recall that the user may specify different servers for the various services, so
the correct server must first be identified before locating the service itself.
project is the project to find the service for.

serviceTypeClass 1is the class of the service required, such as
EjbService.Type.

VERSION
The getServices method is only available in JBuilder 9 and 10.

public abstract Service.Type getServiceType () ;
Obtain a reference to the service type for this service, which was created and
registered as part of the initOpenTool method. This object is an instance
of the Type class from the abstract Service base class, such as
JspServletService.Type for a JSP/servlet service.

public Object[] getServiceTypeKeys () ;
Provide the list of Service.Type based objects that can locate this service
within a map. By default, a single element array with the value from
getServiceType is returned. You can provide additional information to
make this key unique if necessary.

VERSION
The getServiceTypeKeys method is only available in JBuilder 9 and 10.

public boolean isGranular();
Returns true (the default) if this service can be enabled or disabled separate
from other services in the server, or false if it cannot.

public void postStart (ServerLauncher launcher);

public void postStop (ServerLauncher launcher);

public void preStart (ServerLauncher launcher) throws
VetoException;

public void preStop (ServerLauncher launcher);
Add processing before or after the service starts or stops. By default nothing
extra happens. You may prevent the service from starting by raising a
VetoException in the preStart method.

launcher is the launcher instance for this service (covered below).

protected static boolean projectUsesService (Project
project, Class serviceTypeClass, Service service);
Determine whether or not a given service is used in a project, returning true
if it is, or false if it is not.

project is the current project.
serviceTypeClass is the type of service being requested.
service is the service to check.

236 Part VIII: External Systems

VERSION
The projectUsesService method is only available in JBuilder 9 and 10.

public boolean supportsFeature (Feature feature);
Return true if this service supports a particular feature, or false if it does not.
The default implementation checks for the feature’s presence in the
featuresSet field.

feature identifies the required feature.

public void validate (ServerLauncher launcher) throws
VetoException;
Check that the launcher is properly configured for this service, and throw a
VetoException if this is not the case. The base implementation does
nothing.

launcher is the launcher instance to be run.

The fields listed below also appear in this class:

protected Set featureSet;
The set of features for this service. It is initialized by the buildFeatureSet
method.

protected static final ServiceDependency[] NO DEPENDENCIES;
protected static final Featurel] NO_FEATURES;_
These empty arrays may be used as the return values from methods when
necessary, rather than creating them each time.

VERSION
The NO FEATURES field is only available in JBuilder 7 and 8.

Server Class

The com.borland.jbuilder.server.Server class was introduced in
JBuilder 7 to offer more functionality than the original AppServer one. It allows
individual services to be supplied by different servers within the one project. For
example, Tomcat could perform your JSP/servlet processing, while JBoss
handles the EJBs. It operates in conjunction with ServerLauncher (see below),
which provides the interface with the JBuilder runtime system for the offered
services.

VERSION

The Server class supercedes (along with the ServerLauncher class) the
earlier AppServer class. Although the latter class is still supported, the former
should be used for new server tools.

NOTE

The com.borland.jbuilder.server.legacy.LegacyServer class
provides adapters that allow for the integration of old-style AppServer
OpenTools into the new server architecture. JBuilder automatically performs this
task when the old-style tool is registered.

You register a descendent of this class with the ServerManager class through
its registerServer method. Although there are many methods within this

Chapter 28: Application Servers 237

class, you only need to override a few to implement basic functionality for a new
application server: getDefaultClassPath, getDefaultHomeDirectory,
getDefaultName, getDefaultVersion, getPackages, isValidSetup-
Directory, newLauncher, and registerServices.
The abilities of this class are:
public Server();
public Server (String name);
Create a new application server interface.
name is the name of the server supported, including version.
protected Url[] addUniquePath (Url[] oldPath, Url url);
Updates and returns a set of paths by adding a new one to it, but only if it is
not already there.
oldPath is the set of paths to modify.
url is the new path to add.
public boolean attemptDefaultConfiguration();
Override this method to try to configure the server, based on the location of
JBuilder and the default location of the server installation. Return a flag
indicating your success (true) or failure (false). Once configured, this method
is no longer called.
protected String changeDirectoryReferencesInString (String
currentValue, String currentDirectory, String
newDirectory) ;
Updates a string value to replace old directory references with new ones.
currentValue is the text to scan and modify.
currentDirectory is the old directory to find. If this value is empty or
null, nothing changes.
newDirectory is the replacement directory name. If this value is null,
nothing changes.
public boolean checkSetup (Component host);
Use this method to check that the application server has been properly
configured, returning true if it has a CustomConfigurationPage that has
been completed, or false otherwise.
host is the host for a message dialog that appears if the server has a
CustomConfigurationPage but it has not yet been completed. This value
may be null.
protected void clear();
Tidy up this object by releasing any resources that may be held. By default it
clears out the path set for the server.

VERSION
The clear method is only available in JBuilder 9 and 10.

public void clearProjectSettings (JBProject project);
This method is called when this server is no longer used by the project. It
should remove anything that it specifically added to the project.
project is the project to modify.

VERSION
The clearProjectSettings method is only available in JBuilder 9 and 10.

238

Part VIII: External Systems

public void createClientJar (Browser browser, Stringl]
paths);
Generate the client JAR.

paths is the list of class paths to use.

VERSION
The createClientJar method is only available in JBuilder 7.

public PathSet createClientLibrary(String installPath);
Provide a library that references the classes required for a client application
to access this server. By default this method just calls createLibrary,
passing in the results of getClientLibraryName and getClient-
LibraryClassPath. Override it only if you need something more.
installPath is the directory in which the server is installed.

public void createlibrariesFromSetup (String installPath);
Call this method from a CustomConfigurationPage’s writeProp-
erties method to create the libraries used by this application server.
Unless overridden, it just calls createClientLibrary.
installPath is the location where the application server was installed.

public PathSet createlibrary(String libraryName, Url[]
classPathEntries);
Creates a new library that references certain paths. If the library already
exists, its existing paths are replaced by the supplied set.
libraryName is the name of the new library.
classPathEntries is a list of paths to include for this library.

public static String ensureNonNullValue (String wvalue);
Replaces a null string reference with an empty string, while returning a
valid string as is.
value is the string to check.

public void ensureProjectContainsServerClientLibrary (
JBProject project);
This method calls ensureProjectContainsAppServerLibrary with
parameters to add the client library settings to the project.
project is the project to update.

public void ensureProjectContainsServerLibrary(String
libraryName, JBProject project, Url[] classPathEntries);
Add the named library to the project, placing it at the top of the list. This
library contains the classes that provide the functionality of this application
server. If it does not exist, it is created using the supplied classpath values. If
the application server has not yet been set up, the library’s name is added to
the project, but it is not created.
libraryName is the name of the library for the application server files
(usually the server’s short name).

project is the project to update.
classPathEntries is the list of paths that make up the library.

Chapter 28: Application Servers 239

public static String formatJarFileParameter (String
jarFile);
Ensures that the name of a JAR file is properly represented for the current
operating system, for example, surrounding names with embedded spaces in
quotes. The corrected name is returned.
jarFile is the name of the JAR file.

public JDKPathSet getAssociatedJddk() ;
An alternate JDK may be connected with the application server (see
getJdkSupportProvider), in which case its paths are returned. If none
has been specified, the default JDK for JBuilder is used.

public Url[] getClassPath();
Retrieves the classpath for this application server.

public ClientJarService getClientJarService();
Supply a reference to the client JAR service for this server, or null if there
is none.

public Url[] getClientLibraryClassPath (String installPath);
Returns the list of paths for the classes necessary for client access to the
server, or null (the default) if there are none. Find the name of this library
with the getClientLibraryName method.
installPath is the location where the application server was installed.

public String getClientLibraryName () ;
Return the name of the library that contains classes necessary for clients to
communicate with the server. By default this returns the server’s short name
with version plus “ Client”. Find this library’s classpath with the
getClientLibraryClassPath method

public Node getCompanionNode (Node node) ;
Finds the matching node for that given, being the other of the
EJBGRPFileNode (parent) or JarFileNode (child) given. Extend this in
your subclass for other nodes.
node is the EJBGRPFileNode or JarFileNode to match.

protected Server getCopy();
Return a copy of this server that has the same behavior. By default this
method just creates a new server of the current type and copies the path set
into it.

VERSION

The getCopy method is only available in JBuilder 9 and 10.

public CustomConfigurationPageFactory
getCustomConfigurationPageFactory() ;
Supply the factory for a configuration page for this server. The resulting page
appears in the Configure Servers dialog.

public abstract Url[] getDefaultClassPath();

public abstract Url getDefaultHomeDirectory();

public abstract String getDefaultName () ;

public String getDefaultServerName () ;

public abstract String getDefaultVersion();
Provide the default settings for various properties. See the corresponding
methods in the AppServer class for more details.

240

Part VIII: External Systems

public DeployService getDeployService();

public EjbService getEjbService();
Give a reference to the deployment or EJB service for this server, or null if
there is none.

public String getExtraVisiBrokerToolParameters();
Use this method to return additional parameters to be passed to various
VisiBroker tools, such as java2iiop. The default implementation returns

(133}

VERSION
The getExtraVisiBrokerToolParameters method is not available in
JBuilder 7.

protected String getFileNameBasedOnProtocol (String
protocol, String name);
Formats a file name as it appears for a particular file system implementation.
protocol is the name of the Filesystem protocol to use (see Chapter 5).
name is the file name to update.

public Url[] getFullClassPath();
Returns the complete classpath for this application server as a set of paths.

public Url[] getFulllibraryClassPath(String libraryName,
Url[] necessaryClassPath);
Gets the full list of paths for a given library. If it does not exist, the library is
created with the given paths, and then returned.
libraryName is the name of the library to locate.
necessaryClassPath is the minimal set of classpath entries required for
this library.

public String getFullName () ;
Obtains the full name (name and version) for this application server.

public Url getHomeDirectory();
Discovers where the application server was installed. The returned directory
is the base of that installation.

public String getIncompleteDescription();
Returns a string indicating that this application server has not yet been fully
configured: “xxX has not been configured.”

public JdkSupportProvider getJdkSupportProvider();
Obtains a reference to an alternate JDK to use when running this application
server, or null if none was specified. The returned class is not described in
this book.

public JspServletService getJspServletService();
Supply a reference to the JSP/servlet service for this server, or null if there
is none.

public long getLastModified();
Finds out the version stamp for the paths of the server. Note that this is a
sequential number and not a timestamp.

public String getLegacyFullName () ;
Retrieves an older name previously used for this server, or nul1l if there was
none.

Chapter 28: Application Servers 241

protected ArraylList
getLibraryNamesToClearOnResetToDefaults () ;
This method is not currently used.

VERSION
The getLibraryNamesToClearOnResetToDefaults method is only
available in JBuilder 9 and 10.

public String getName () ;
Returns the library name for this application server.

public static String getNameFromFullName (String fullName) ;
Extracts the name part of the application server’s full name (see the
makeFullName method).
fullName is the full name for the application server, including version.

public Url[] getNewPathsBasedOnNewHomeDirectory (String
newHomeDirectory, Url[] paths);
Updates all the paths to reflect a new base directory. Any existing entries
beneath the old home directory are relocated to the new one, while other
paths have their first directory entry altered to the new value. The actual
classpath for the server remains unchanged. Use updateClassPathWith-
NewHomeDirectory to affect the real classpath.
newHomeDirectory is the full path to the new base directory.
paths is the list of Urls to modify.

public static String getNodeValue (NodeProperty property,
ArrayList nodes);
Determines whether a property setting is the same for a set of nodes. If all
nodes have the same value for the property, that value is returned. In all other
cases an empty string results (never null).
property is the property to retrieve.
nodes is a list of Node objects to examine.

public String[] getOptimizerPackages|();
Provide the list of packages not to trace in the optimizer. You may include a
trailing asterisk as a wildcard, such as “org.apache. tomcat.*”. The
default is the result of getPackages

VERSION
The getOptimizerPackages method is not available in JBuilder 7.

public abstract String[] getPackages();
Supply the list of packages not to trace in the debugger. You may include a
trailing asterisk as a wildcard, such as “org.apache. tomcat. *”.

public ServerPathSet getPathSet();
Obtains the path set for this server. The returned class is not covered in this
book; however, it extends pathSet (see Chapter 9).

public String getServerTypeId();
Provide a unique string to identify a type of server plugin. By default this is
just the full class name.

VERSION
The getServerTypeId method is only available in JBuilder 9 and 10.

242

Part VIII: External Systems

public Service[] getServices();
Return a list of the services provided by this server. By default, it queries the
ServerManager for services registered against this server.

public ServerLauncher getSetupLauncher();
This method provides a shared instance of the ServerLauncher for this
server. It is used during configuration, but not at runtime.

public String getShortName () ;

public String getShortNameWithVersion () ;
Gets the short name, with or without version information, for the server. By
default, the former returns getName, while the latter returns this plus the
version. Override these if you want something else. For example, the former
returns “JBoss 2.4.x” for the JBoss tool.

public Url[] getUniqueRunDebugClassPath (Url[]
checkClassPath) ;
Adds the current classpath to the one given and filters out duplicates.
checkClassPath is the classpath to add to.

public Url getUrl();
Returns the path to the library for this application server.

public String getVersion();
Discovers the version of this server.

public String getVisiBrokerConfigurationName () ;
Provide a value that can be used to identify a VisiBroker configuration for a
BES server plugin. By default it returns null if usesVisiBrokerOrb is
false, or “VisiBroker ” and the name of this server if true.

VERSION
The getvVisiBrokerConfigurationName method is only available in
JBuilder 9 and 10.

public int getWeight () ;
Supply the weight value (defaulting to 50) for the ProjectPropertyPage-
Listener for this server.

VERSION
The getWeight method is only available in JBuilder 10.

public boolean hasClientJarCreator();

public boolean hasEjbDeployer () ;
Indicate whether or not this server provides the given functionality, returning
true if it does, or false if it does not

VERSION
The hasClientJarCreator and hasEjbDeployer methods are only
available in JBuilder 7.

public boolean hasSetup();
Return true if this server needs to be configured in the Configure Servers
dialog before it can be used, or false if it can be used immediately.
protected void initialize();
Prepare this server for use.

Chapter 28: Application Servers 243

VERSION
The initialize method is only available in JBuilder 10.

protected boolean isCopy();
Indicate whether or not this server is a copy. By default this method checks
its underlying path set.

VERSION
The isCopy method is only available in JBuilder 9 and 10.

public boolean isGranular();
Return true if the server can enable or disable individual services, or false
(the default) if it cannot.

public boolean isIncomplete();
Indicate whether this server has been properly configured yet, returning true
if not, or false if it is ready to go. By default it checks hasSetup and
isSetup.

public boolean isInitiallySetup();
If this server can be successfully auto-configured then return true and the
server can be immediately enabled. Otherwise return false (the default). This
method is called as part of attemptDefaultConfiguration

VERSION
The isInitiallySetup method is only available in JBuilder 10.

public boolean isPageValid(ProjectServerModel model) ;
Indicate whether or not the current state of the model is valid (the default is
true), allowing the associated property page to close.

model provides access to the original, current, and immediately prior
selections. This class is not covered in this book.

VERSION
The isPagevalid method is only available in JBuilder 10.

public boolean isServerEnabled();
Discover whether this server has been enabled in the Configure Servers
dialog.

public boolean isSetup();
Returns true (the default) if the application server is configured and ready to
run, or false if it requires further work. Compare this with isSetup-
Completed.

public boolean isSetupCompleted();
Discovers whether the configuration for this application server has been run
during this session, returning true if it has, or false (the default) if it has not.
Even if this method returns true, the server may not be ready to run as it may
require a restart of JBuilder. This value resets to false when JBuilder is
restarted.

public abstract String isValidSetupDirectory (String
setupDirectory);
Provide a description as to why the given setup directory is invalid, or null
if it is acceptable.

244

Part VIII: External Systems

setupDirectory is the directory used to set up the server. In most cases
this is the home directory of the server.

public boolean libraryExists (String libraryName) ;
Returns true if the given library already exists, or false if it does not.
libraryName is the name of the library to locate.

public static String makeFullName (String name, String
version);
Combines the name and version of an application server into a single value.
Use getNameFromFullName to obtain the first part again.
name and version are the separate identifying values for an application
server.

public String makeServerLibraryName (String
libraryNameSuffix) ;
Generate a library name for the server that combines the short server name
(getShortNameAndvVersion) and unique suffix, such as “WebLogic 6.1
Client”. If the server is a copy (isCopy returns true), then the name
derives from the full server name (getFullName) and unique suffix.

libraryNameSuffix is the unique part of the name, e.g. “Client”.

VERSION
The makeServerLibraryName method is only available in JBuilder 9 and 10.

public String makeServerToolName (String toolNameSuffix);
Create a name for a tool to appear on the JBuilder menu, allowing it to be
uniquely identified. Combine the full server name (getFullName) with the
given tool name, e.g. “WebLogic 6.1 Admin Console”.

toolNameSuffix is the unique name for the tool, e.g. “Admin Console”.

VERSION
The makeServerToolName method is only available in JBuilder 9 and 10.

public void modifyProjectLibraryList (String libraryName,
JBProject project, boolean add);
Adds or removes a library from the list of those required for a project. When
adding, the library is placed at the top of the project’s list, or is moved there
if already present.

libraryName is the name of the library to add or remove.

project is the project affected.

add is true to add the library, or false to remove it.
public abstract ServerLauncher newLauncher () ;

Create a new ServerLauncher for this server to run a service. Always
return launchers of the same class.

public void preServiceSelectionChangedAndSaved (
ProjectServerModel model) ;
React to changes to the set of services for a project through this method. It is
called just before they are changed and saved.
model provides access to the original, current, and immediately prior
selections. This class is not covered in this book.

Chapter 28: Application Servers 245

VERSION
The preServiceSelectionChangedAndSaved method is only available in
JBuilder 10.

public abstract void registerServices();
This method is called as the final part of the server registration process. It
allows the server to register its own services. This avoids cluttering the
classes.opentools file for your tool with a myriad of service classes.
Your code would look like the following:

ServerManager.registerService (new MyJspServletService (this));

public void save();
Writes the server’s settings out to disk.

public void serverModified(Server server);
React to changes to the properties of the server through this method. The
default method does nothing.
server is the server affected.

public String serverRelativePath (String
jbuilderRelativePath) ;
Adjust a path that is relative to JBuilder’s installation directory to one that is
relative to the server’s installation.
jbuilderRelativePath is the JBuilder—based path.

public void serviceSelectionChanged (ProjectServerModel
model) ;

public void serviceSelectionChangedAndSaved (
ProjectServerModel model) ;

Respond to changes in the application server assigned to a project by
overriding these methods. The “saved” version ensures that the old server’s
client library is removed and the new one is added. Be sure to call the
inherited versions if you override either of these methods.

model contains details about the servers and services attached to a project.
This class is not covered in this book.
project is the project to which they apply.
public void setClassPath(Url[] classPath);
Updates the classpath for this application server.
classPath is the list of paths to use.
public void setCustomConfigurationPageFactory (
CustomConfigurationPageFactory factory);
Establish the factory for configuration pages for this server.
factory is the new configuration page factory.
public void setHomeDirectory (Url homeDirectory);
Updates the base location of the application server.
homeDirectory is the base directory where the server was installed.
public void setJdkSupportProvider (JdkSupportProvider
jdkSupportProvider) ;
Specifies an alternate JDK to use when running this application server.
jdkSupportProvider identifies the JDK to use. This class is not covered
in this book.

246

Part VIII: External Systems

public void setPathSet (ServerPathSet pathSet);
public void setPathSetFromCopy (ServerPathSet copy);
Replaces or copies the application server’s paths.

pathset is the new set of paths to use.
copy is the set of paths to copy.
public void setServerEnabled (boolean enabled);
Mark the server as being enabled from the Configure Servers dialog.
enabled is true to enabled the server, or false to disable it.
public void setSetupCompleted (boolean setupCompleted) ;
Call this method to change whether the configuration page for this server has
been run. See isSetupCompleted for more details.
setupCompleted is true if it has been run, or false if it has not.
public void setVersion(String version);
Updates the version for this application server.
version is the new value. It must not contain any spaces.
public void setWeight (int weight);
Establish the weight value for the ProjectPropertyPagelistener for
this server.
weight is the new weight.

VERSION
The setWeight method is only available in JBuilder 10.

public boolean supportsCopy();
Indicate whether or not this server may be copied — a new instance can be
created with different user settings. If true, the Copy button in the Configure
Servers dialog is enabled. To be copyable, the server must satisfy a large
number of conditions, including using ServerPropertys rather than
GlobalPropertys, and providing unique names for each copy. See the
online help for a complete list.

VERSION
The supportsCopy method is only available in JBuilder 9 and 10.

public boolean supportsCreateClientJar();
Return true to indicate that this server can create a JAR file that provides
access to the EJBs from a client, or false (the default) if it does not.

public boolean supportsJavaRunnableEjbContainer();
Indicate whether or not this server can be run under Java.

VERSION
The supportsJavaRunnableEjbContainer method is only available in
JBuilder 7.

public void updateClassPathWithNewHomeDirectory (String
newHomeDirectory) ;
Updates the classpath entries to reflect a new base directory. Those entries
beneath the old home directory are relocated to the new one. Use getNew-
PathsBasedOnHomeDirectory to find the new paths without modifying
the actual classpath.

Chapter 28: Application Servers 247

newHomeDirectory is the full path to the new base directory.
public void updatelLastModified();
Increments the modified counter for the underlying path set.

protected void updateProjectClientSettings (JBProject
project);
Called from updateProjectSettings, this method lets you update client
configurations in the project. The default implementation does nothing.

project is the project whose configuration is updated.
VERSION

The updateProjectClientSettings method is only available in JBuilder
10.

public void updateProjectSettings (JBProject project,
boolean updateRunConfigurations);
Changes in the server’s settings flow through to open projects via this
method. You can then apply them to the nodes in the project as necessary.
The default implementation ensures that the project’s JDK is set to any
specified by the server, and that the project contains the client library.
project is the project whose configuration is updated.
updateRunConfigurations is true to call the updateRunConfig-
urations method before updating the project, or false to skip it.

VERSION

The updateProjectSettings method is not available in JBuilder 7.

public void updateRunConfigurations (JBProject project);
When the run configurations for the server need to be updated, this method is
called. If you override this method be sure to call the inherited version.
project is the project whose run configurations are updated.

VERSION
The updateRunConfigurations method is not available in JBuilder 7.

public boolean usesVisiBrokerOrb () ;
Return true to indicate that the server uses the VisiBroker ORB, or false (the
default) to show that it does not. This setting affects which JDKs are added to
the orb.properties file.

These fields also appear in this class:

public static final int DEFAULT WEIGHT;
The default weight for a server with respect to ProjectPropertyPage-
Listeners.

VERSION
The DEFAULT WEIGHT field is only available in JBuilder 10.

public static final String INVALID SERVER;
Returned when there is no matching server.

public static final int NEW SERVER WEIGHT;

248 Part VIII: External Systems

VERSION
The NEW SERVER WEIGHT field is only available in JBuilder 10.

public static final String NO_NAME;
The value returned when the server name is not known.

public static final Comparator WEIGHTED COMPARATOR;
Compare servers based on their weights through this field.

VERSION
The WEIGHT COMPARATOR field is only available in JBuilder 10.

ServerLauncher Class

A server provides instances, via its newLauncher method, of descendents of
the abstract com.borland.jbuilder.server.ServerLauncher class to
allow its services to be run within JBuilder. Each launcher is associated with a
runtime tracker that pipes the process’ output back to a message panel.

Although there is only one Server instance, and one of each of its
Services, there could be many launchers connected to them. You descend your
launchers from this class and implement the methods that invoke the required
service.

UNDOCUMENTED
Although this class is present in the documentation, many of its methods and all
of its fields remain undocumented.

The abilities of this class are listed below:

public ServerLauncher (Server server);
Create a new launcher and associate it with a server.
server is the server that created the launcher.

public void addSourceBridge (NjplSourceBridge sourceBridge) ;
Add a new source bridge to this launcher — a handler for non—Java—
programming—language translators. This class is not otherwise covered in
this book.
sourceBridge is the bridge to add

protected void appendHttpPort (StringBuffer buf);
If a servlet server descriptor exists for the launcher (in its property bag),
append “ http:” and its port number to the supplied buffer. This does not
seem to be very useful!
buf is the buffer to update.

public boolean canStop();
Indicate whether the server can be stopped, returning true if it can, or false if
it cannot. The default implementation checks for getStopper being non—
null.

VERSION
The canStop method is not available in JBuilder 7.

Chapter 28: Application Servers 249

public void clearExceptionQueue () ;
Delete any queued exceptions.

public void clearSourceBridges();
Remove all source bridges.

public void configurelLauncher (JBProject project, Map
propertyMap, RunJavaProcessTracker tracker, Url workDir)
throws VetoException;
Prepare to run by configuring the launcher. The base class copies the
parameters into internal fields, and finds the required services from the
property map (using ServerRunner.getEnabledServices). A Veto-
Exception should be thrown if the server cannot launch.
project is the project using the server.
propertyMap is the collection of properties that the server was started with.
tracker is the object that redirects the server’s output to JBuilder.
workDir is the working directory for the server.

public void configurelLauncher (JBProject project, Servicel]
services);
Configure this launcher for a set of services to simulate a run. The services
are not validated and the propertyMap, tracker, and workDir fields are
all set to null.
project is the project using the server.
services is the list of services to configure. This value should not be null,
should not be empty, nor have any duplicate entries.

protected void configureServices();
Calls configureLauncher for each service to be run.

public String customizeArguments (String currentArguments) ;
Update the parameters for the application server if necessary, just before they
are passed to it. You may return an empty string, but should not return a
null. By default, the current parameters are simply passed back.
currentArguments is the current set of parameters for the server.

public String customizeClassPath (String currentClassPath);
Perform a final customization of the server classpath, just before it runs. The
returned value should not be null, but may be an empty string. The default
version simply returns the path supplied.
currentClassPath is the current path to be used.

public PathSet[] customizelibraries (PathSet[] pathSets);
Modify the libraries in a run configuration that can be deployed to the server.
The default implementation removes the server’s client library and the
project’s Servlet library.
pathSets is the list of paths in the project.

public String customizeTransportAddress (String
transportType, String transportAddress);
Update the transport address used for this launcher before it is used. By
default, the current address is passed back unchanged.
transportType is the current type.

transportAddress is the current address.

250

Part VIII: External Systems

VERSION
The customizeTransportAddress method is not available in JBuilder 7

public String customizeVmParameters (String
currentVmParameters) ;
Customize the parameters for the server’s VM just before they are used. You
may return an empty string, but should not return a null. By default, the
current parameters are simply passed back.
currentVmParameters is the current set of parameters for the VM.
protected void deployLibraries();
Copy all required libraries to the server using the deployLibrary method.
protected void deployLibrary(PathSet library);
For each path in the library, call deployLibraryEntry to copy it to the
server.
library is the library to copy.
protected void deployLibraryEntry (Url source);
Copy a directory or file to the server.
source is the item to be copied.
protected String escapeParameter (String arg);
Check a value for embedded spaces, and surround the entire text with quotes
if found. Otherwise, just return the supplied value.
arg is the original text.
public String[] getArchivesToDeployOnRun () ;
Define the archives to be deployed when the server starts. By default the
routine returns the value of the ServerRunner.ARCHIVES property if the
server supports this functionality. Return the list of archives to deploy on
start up, or null if this feature is not supported.
public String getArguments () ;
Retrieves the user—specified parameters for the application server.
public abstract String getCommand() ;
Construct the complete command-line to run the server through this launcher
and return it.
public Url getCurrentWorkingDirectory();
Find the current directory for starting the server.
public abstract String getDefaultArguments () ;
public abstract String getDefaultNecessaryArguments () ;

public abstract String getDefaultNecessaryVmParameters() ;
public abstract String getDefaultVmParameters () ;

Return the default values for the suggested or required server parameters, or
the suggested or required VM parameters. None of the parameters should
return as null, but may be empty strings. The necessary parameters are not
displayed to the user and are always prepended to the values sent to the
server when it is run.
public Url getDefaultWorkingDirectory();

Supply the specific working directory needed for the server to run. If this is
returned as null (its default implementation), a directory with the name of
the server is created beneath the project’s working directory.

Chapter 28: Application Servers 251

public String[] getEnvironment () ;
Provide a custom environment for the server runtime through this method. If
it returns null (the default), then the environment that exists for JBuilder is
used.

public static String[] getEnvpWithPathVariablePrefix (
String pathPrefix);
Modifies the path in the current environment by prepending it with the value
supplied. It returns null if no environment variables exist.
pathPrefix is a list of paths to prepend to the existing classpath.

public Object getFromBag (Object key);
Find a value identified by its key, or nul1l if it cannot be found.
key is the value that identifies a particular setting.

protected static File getJavalauncher (JBProject project);
Retrieve a reference to the Java runtime application.
project is the project whose JDK is used.

public String getLabel () ;
Concatenates the server short name with version and any HTTP port (see
appendHttpPort) to return as the label for this launcher.

protected String getLibraryClassesRelativePath();
Supply the relative path to the classes for this launcher, defaulting to
“../classes”.

public Url getlLibraryDestination();
The purpose of this method is unclear, although it defaults to nul1l.

public String getNecessaryArguments () ;

public String getNecessaryVmParameters () ;
Provide the parameters required to run the server or its JVM.

public JBProject getProject();
Find the project that this launcher is running.

public Url[] getProjectlLibrariesForRun (JBProject project);
Provides the list of paths that make up the classpath for the application
server. Generally this is the entire set of libraries assigned to the project. You
should call the inherited version in your subclass to obtain the initial set of
paths to work with.
project is the project whose classpath is needed. It may be null.

public Map getPropertyMap () ;
Obtain the set of properties established for this launcher.

public Exception[] getQueuedExceptions();
Return the list of queued exceptions for this server.

public PropertyPageFactory[] getRunConfigPropertyPages (
Server server, ProjectServerModel model, Map
propertyMap) ;
Provide the list of property pages for configuring this server. You can call
upon the standardRunConfigPropertyPages method to return the
default set of pages, as is done in the base implementation.
server is the server being configured.
model contains information about the project.

propertyMap holds the current service selections.

252

Part VIII: External Systems

public Server getServer();
Access the server to which this launcher belongs, as set at creation.

public Service getService (Service.Type serviceType);
Find and return a service based on its type, or null if no match is found.
serviceType is the type of the required service.

public Service[] getServices();
Obtain a list of all the services configured for this launcher.

public int getShutdownWaitTime () ;
Return the time (in seconds) to wait for the server to shutdown (defaulting to
5).

public NjplSourceBridge getSourceBridge (String extension);
Locate a source bridge for a particular file extension and return it, or null if
no match is found. The returned class is not covered in this book.
extension is the extension to search for.

public NjplSourceBridge[] getSourceBridges();
Access the list of source bridges for the launcher.

protected Stopper getStopper():;
Obtain the stopper thread object for this server. This method is called within
the stop method to assist in halting the server. By default it returns null.

public RunJavaProcessTracker getTracker();
Access the tracker for this launcher — it redirects output back to JBuilder.

public String getVmParameters();
Retrieves the user—specified parameters for the application server’s JVM.

protected Thread getWaitForServerThread (WaitsForServer
waitron) ;
Find the thread that waits for the server to be ready.
waitron provides a link to check on the server’s readiness.

public Url getWorkingDirectory();
Finds out the working directory for the application server — where the server
is started from.

public String getWorkingDirectoryFromHomeDirectory (String
homeDirectory) ;
Based on a home directory, return the name of the working directory that
should be used, or null (the default) if no special directory is required.
homeDirectory is the base location for the application server.

protected void init();
Override this method to perform any initialization processing. It is called by
initLauncher following clearing of internal values, and before configuring
the services.

protected void initLauncher (Service[] services);
This method saves the list of requested services, clears out internal settings,
and then prepares to run through a call to configureLauncher for the set
of services. The method is itself called by the other version of
configureLauncher once the services are validated.

When invoking the services’ methods, they are processed in the order of

the array during their configureLauncher, preStart, and postStart
calls, but in reverse order during the preStop and postStop calls.

Chapter 28: Application Servers 253

services is the set of services to prepare for. This value should not be
null, not be empty, nor have any duplicate entries.

public String isValidWorkingDirectory(String
workingDirectory, String homeDirectory);
Verifies that a particular directory is appropriate as the working directory for
this server (see getDefaultWorkingDirectory), returning a null (the
default) if it is valid, or an error message if it is not.
workingDirectory is the name of the directory to check
homeDirectory is the base directory for the application server.

public void postStart();
The default version of this method waits for the server to start, and then calls
postStart on each of its services. You can override this behavior if
something else is required following start up.

public void postStop();
After the server has terminated, but before the UI regains control, this
method is called. The default implementation calls each service’s postStop
method. Override it to perform any other tasks necessary at this time.

public boolean preStart();
This launcher can perform any startup tasks before the server actually starts
by overriding this method. Return true if the server can be started, or false if
the run should be aborted.

protected boolean preStartServices();
Attempt to prestart all the services by calling their preStart methods.
Return true if none threw a VetoException, or false if any of them did.

public void preStop();
Just prior to the server terminating, this method is called. The default
implementation calls each service’s preStop method. Override it to perform
any other tasks necessary at this time.

public void putInBag(Object key, Object wvalue);
Save a keyed value for this launcher.
key is the identifying object for the setting.
value is the new value of that setting.

protected void queueException (Exception ex);
Add a new exception to the list of those queued for the server.
ex is the new exception.

public void restoreFrom(Server server);
Copies the main settings from an application server adapter to this launcher.
server is the instance to copy from.

public void setArguments (String arguments);
Alters the parameters passed to the application server when it is run or
debugged.
arguments is the new set of parameters for the server.

public void setNecessaryArguments (String arguments) ;

public void setNecessaryVmParameters (String parameters);
Modifies the set of parameters required for the application server or its JVM
to run. These are not accessible through the GUI, and are inserted before any
user—specified parameters.

254

Part VIII: External Systems

arguments Or parameters is the new set of required parameters.

public void setVmParameters (String parameters);
Alters the parameters passed to the application server’s JVM when it is run
or debugged.
parameters is the new set of parameters for the JVM.

public void setWorkingDirectory (Url workingDirectory);
Modifies the location from which to run the application server.
workingDirectory is the new directory to start it in.

protected List standardRunConfigPropertyPages (Server
server, ProjectServerModel model, Map propertyMap) ;
Use this method to obtain the list of standard run configuration pages for a
launcher (such as from getRunConfigPropertyPages). These include
one for the server itself, and optional ones for the Libraries and Archives
topics.
server is the server being configured.
model contains information about the project.
propertyMap holds the current service selections.

public boolean stop();
React to the user terminating the server though this method. You can then
perform any clean up tasks that are necessary. Return true if this method
actually shutdown the server, or false if it did not.

public boolean supportsClearDeployedArchivesBeforeRun() ;
When this method returns true, a checkbox appears on the Server run page
under the Archives topic, allowing the user to indicate whether they want to
remove any existing archives before deploying a new set. By default the
routine returns false.

public void trackerClosed();
Override this method to respond to the closure of the tracker for this server.
By default it does nothing.

protected void updatelastModified();
Increments the modified counter of the server.

protected String useVmParameter (StringBuffer vmParams,
String name, String defaultValue);
Find the value of a parameter for the server’s VM through this method. It
searches the parameters for a given name and returns its value. If not found,
the parameter is added with a default value, and that default is returned
instead.
vmParams is the current list of VM parameters.
name is the name of the parameter to check for.
defaultValue is the value to add for the parameter if it cannot be found.

public void validateServices (JBProject project, Servicel]
services) throws VetoException;
Check that this launcher can run the requested services. You should not make
any permanent changes to the launcher at this time. By default the launcher
ensures that the array is not empty and then calls validate on each entry. A
VetoException is thrown if the services cannot be run.

Chapter 28: Application Servers 255

project is the project using this server.
services is the list of services to check.

The following fields are also available for your descendents of Server-
Launcher:
protected Map bagMap;
The map that contains settings for the launcher — accessible through the
getFromBag and put InBag methods.
protected Exception[] exceptions;
The list of queued exceptions.
protected JBProject project;
The project for this launcher, as set through configureLauncher.
protected Map propertyMap;
The map of properties for the launcher, as set through configure-
Launcher.
protected Service[] services;
The services provided by this launcher, as set through initLauncher.
protected NjplSourceBridge[] sourceBridges;
The array of source bridges for the launcher.
protected RundJavaProcessTracker tracker;
The tracker for the launcher, as set through configureLauncher.
protected Url workDir;
The current working directory.

AppServerTargeting Class

Assisting in the build process when deploying to a particular application server is
the com.borland.jbuilder.enterprise.ejb.AppServerTargeting
class. It lets you hook into the build process surrounding the JAR file for your
EJBs, as well as identify additional properties that may be required by each
server implementation.

WARNING
This class no longer appears in JBuilder 10.

Its methods are:

public void antify(AntExporter antExporter, EJBGRPFileNode
ejbGrpNode) ;
Update an Ant build file to create the EJB JAR file for the given group. The
default implementation adds an Ant fail task. Override this method to add
tasks that generate any stub or skeleton files, and then package up the
contents into a deployable JAR file.
antExporter is the wrapper for the Ant build file. It is not covered in this
book.

ejbGrpNode is the EJB group being examined.

VERSION
The antify method is only available in JBuilder 9.

256

Part VIII: External Systems

protected Element createAntJarTask (AntExporter antExporter,
EJBGRPFileNode ejbGrpNode, Url targetUrl);

protected Element createAntTmpJarTask (AntExporter
antExporter, EJBGRPFileNode ejbGrpNode) ;
Add an Ant task to the given build file that generates a temporary JAR file.
The methods return the Ant target element to which the task was appended.
Usually you would call this from your antify method and then update that
JAR to make it fully deployable.
antExporter is the wrapper for the Ant build file.
ejbGrpNode is the EJB group being examined.

targetUrl is location of the JAR file to create.

VERSION
The createAntJarTask and createAntTmpJarTask methods are only
available in JBuilder 9.

public EjbPropertyElement[] getEjbJarProperties (
EJBGRPFileNode ejbGrpNode) ;

Obtain an array of vendor—specific properties for the EJB group as a whole
so that the user can update them. Return nul1l if the property viewer should
not appear at all. This class is not discussed in this book, though it is
documented in the online help.
ejbGrpNode is the EJB group being examined.

public EjbPropertyElement[] getEjbProperties (EjbReference
ejbRef) ;
Get an array of vendor—specific properties relating to a given EJB so that the
user can amend them. Return null if you do not want the property viewer to
show at all.
ejbRef is a reference to an EJB. It may be null. This class is also not
covered in this book. It gives you details about the EJB (like getIndiName
and isSessionBean) and access to the Java classes that provide its various
interfaces (such as getBeanNode and getHomeNode). Unfortunately this
class is undocumented.

protected Url getJarTarget (EJBGRPFileNode ejbGrpNode) ;
Supply the location of the JAR file to create.

ejbGrpNode is the EJB group being examined.

VERSION
The getJarTarget method is only available in JBuilder 9.

public String getPageName (AppServer appServer);
public String getPageName (Server server);
Retrieve the name of the property page for a server.

appServer and server identify the application server to look for.
WARNING

The getPageName method that takes an AppServer parameter has been
deprecated.

public static Server getServer (Project project);
Find the server associated with the EJB service for a project.

Chapter 28: Application Servers 257

project is the project being examined.

VERSION
The getServer method is only available in JBuilder 9.

public boolean hasEjbJarProperties (EJBGRPFileNode
ejbGrpNode) ;
Return true if there are JAR—level properties to be shown, or false if there are
none.
ejbGrpNode is the EJB group being examined.

public boolean hasEjbProperties (EjbReference ejbRef);
Return true if this EJB has any properties to display, or false if there are
none.
ejbRef is a reference to an EJB. It may be null.

public void postProcessBuild (BuildProcess buildProcess,
EJBGRPFileNode ejbGrpNode, JarFileNode jarNode) ;
Following the build processing, implement any extra processing required.
buildProcess is the process that performed the build (see Chapter 25).
ejbGrpNode is the EJB group file node being built.
jarNode is the newly built JAR file.

public void preProcessBuild (EJBGRPFileNode ejbGrpNode) ;
Perform any additional process before the main build process starts.
ejbGrpNode is the EJB group file node being built.

public void updateBuildTask (StubsBuildTask task,
EJBGRPFileNode ejbGrpNode, EjbReference[] ejbRefs);
Add a task to the build process to create stubs for the given node if

necessary. This task runs after the EJB files are compiled and before the JAR
file is generated.

task is the build task to update if required. This class (com.borland.
jbuilder.enterprise package) is not covered in this book, but it extends
BuildTask (see Chapter 25) and adds the addBuildElement method for
your use.

ejbGrpNode is the EJB group file node being built.
ejbRefs is an array of references to the EJBs in this group.

public DeploymentDescriptor(]
updateDeploymentDescriptors (DeploymentDescriptor[] dds,
EJBGRPFileNode ejbGrpNode, BuildReport report);

public DeploymentDescriptor(]
updateDeploymentDescriptors (DeploymentDescriptor[] dds,
EJBGRPFileNode ejbGrpNode, boolean forceUpdate,
BuildReport report);

public EarDeploymentDescriptor/(]
updateDeploymentDescriptors (EarDeploymentDescriptor|[]
edds, EarGrpFileNode earGrpNode, BuildReport report);
Update the EJB or EAR group file node during the build process. The
methods return an array of deployment descriptors to include in the JAR file,

or null if none apply.
dds and edds are the arrays of deployment descriptors to examine.

258

Part VIII: External Systems

ejbGrpNode and earGrpNode are the EJB or EAR group file nodes being
built.

report is where to send any warnings and error messages. This class is not
covered in this book, but you would call its addBuildError, addBuild-
Message, or addBuildWarning methods depending on the severity of the
problem encountered. The class is undocumented.

forceUpdate is true to clear out any cached descriptors, or false (the
default) to leave them.

WARNING
The first updateDeploymentDescriptors method above has been deprecat-
ed in favor of the second version.

public void updateVerifyReport (EJBGRPFileNode ejbGrpNode,

JarFileNode jarNode, BuildReport report);
Read the contents of the JAR file and validate them. This occurs following
the build processing and before postProcessBuild is called.

ejbGrpNode is the EJB group file node being built.
jarNode is the JAR file to examine.
report is where to send any warnings and error messages.

public void verifyDeploymentDescriptors (MessageView mv,

MessageCategory mc, DeploymentDescriptor([] dds,
EJBGRPFileNode ejbGrpNode) ;

public void verifyDeploymentDescriptors (MessageView mv,

MessageCategory mc, EarDeploymentDescriptor[] edds,
EarGrpFileNode earGrpNode) ;

Verify the supplied deployment descriptors and send any warnings or error
messages to the Message Pane. This method is called when the Verify button
is pressed in the EJB DD Editor tab. Listings 28—1 and 28-2 contain
examples from the JBoss tool.

mv is a reference to the Message Pane to send notifications to.
mc is the message category to use when sending messages.
dds and edds are the arrays of deployment descriptors to verify.

ejbGrpNode and earGrpNode are the EJB or EAR group file nodes being
reviewed.

Listing 28-1. JBossTargeting24.verifyDeploymentDescriptors.

public void verifyDeploymentDescriptors (MessageView messageview,

MessageCategory messagecategory, DeploymentDescriptor
adeploymentdescriptor[], EJBGRPFileNode ejbgrpfilenode) {

try {

}

JBossDescriptorConversion24 ddConversion =
new JBossDescriptorConversion24 (
adeploymentdescriptor, ejbgrpfilenode, null) ;
ddConversion.verifyDeploymentDescriptors (
messageview, messagecategory) ;

catch (Exception exception) { }

Chapter 28: Application Servers 259

Listing 28-2. JBossDescriptorConversion24.verifyDeploymentDescriptors.

public void verifyDeploymentDescriptors (MessageView messageview,
MessageCategory messagecategory) throws Exception {
DateFormat dateformat = DateFormat.getDateTimeInstance (2, 1);
try {
super.report = new BuildReport();
messageview.addMessage (messagecategory, "");
String s = dateformat.format (new Date());
s = Strings.format ("Maybe error??", s);
messageview.addMessage (messagecategory, s);
convert (false, true);

BuildMessage abuildmessage[] = super.report.getAllMessages();
if (abuildmessage != null) ({
for (int k = 0; k < abuildmessage.length; k++) {
if (abuildmessage[k] .isError()) {

s = Strings.format ("Error", abuildmessagel[k].getMessage(),
String.valueOf (abuildmessage[k] .getLineNumber ())) ;
continue;

}
if (abuildmessage[k].isWarning()) {
s = Strings.format ("Warning"”, abuildmessagel[k].getMessage(),
String.valueOf (abuildmessage[k] .getLineNumber ())) ;
messageview.addMessage (messagecategory, s);
}

}
s = Strings.format ("no error", String.valueOf (0),
String.valueOf (0));

messageview.addMessage (messagecategory, s);
}
catch (Exception exception) {

throw new AssertionException (exception.getMessage()) ;
}

AbstractDeploymentDescriptor Class

An individual deployment descriptor is encapsulated by the abstract com.
borland.jbuilder.enterprise.AbstractDeploymentDescriptor
class. It manages the name and location of the descriptor within the JAR file, as
well as its contents.
The methods of this class are listed below:
public byte[] getBytes();
Supply the content of this descriptor as a byte array.
protected abstract GrpFileAccess getDefaultAccessor();
Define a default read/write interface for the descriptors. This class is not
documented nor is it covered in this book. It only has two methods:
readDescriptors and writeDescriptors, which take an Input-
Stream and OutputStream respectively.

VERSION
The getDefaultAccessor method is no longer abstract in JBuilder 9.

public String getEncoding () ;
Extract the encoding from the XML content of this descriptor.

public String getExtralocation();
Discover any additional directory structure for this descriptor. See set-
ExtraLocation for more information.

260 Part VIII: External Systems

public GrpFileAccess getFileAccessor();
Obtain a reference to the read/write interface for this EJB group. Use the
default one if no other is specified.

public String getName () ;
Find out the name for this descriptor, such as “ejb-jar.xml1”, or null if it
is not yet set.

public long getTimestamp () ;
Retrieve the timestamp for this descriptor, or —1 if not yet set.

public void setBytes (byte[] newBytes);
Amend the content of the descriptor.
newBytes is the replacement text for the descriptor.

public void setExtralLocation (String extralocation);
Update any additional directory structure, beneath the normal META-INF
directory, required by this descriptor. For example, if this setting is
“deploy” then the descriptor appears in the “META-INF/deploy” directory.
extraLocation is the extra path information. If this is null, it is ignored
and any previous value is retained. It defaults to “”.

public void setFileAccessor (GrpFileAccess accessor);
Establish the read/write interface for this descriptor.
accessor is the object to use when reading or writing the descriptor.

public static void setFileAccessor (
AbstractDeploymentDescriptor[] dds, GrpFileAccess
accessor) ;

Apply a file accessor to several descriptors at once.
dds is the array of descriptors to update.
accessor is the read/write object to use for each.

public void setName (String newName) ;
public void setTimestamp (long newTimestamp) ;
Update the name or timestamp for this descriptor.

newName and newTimestamp are the new values to use.

public String toString();

public String toString(String encoding) throws
UnsupportedEncodingException;
Convert the descriptor’s content into a string value.

encoding is the name of the encoding to use during the conversion. It
defaults to the value derived from the content itself.

DeploymentDescriptor Class

As a concrete extension of AbstractDeploymentDescriptor, com.
borland.jbuilder.enterprise.ejb.DeploymentDescriptor can be
used in your applications.

WARNING

The DeploymentDescriptor class has been deprecated in JBuilder 10 in
favor of the XMT framework, which is not covered in this book (see XmtReader
and XmtWriter inthe online help).

Chapter 28: Application Servers 261

The methods of this class are as follows (omitting those that are the same as the
parent class):

public DeploymentDescriptor

public DeploymentDescriptor

public DeploymentDescriptor

public DeploymentDescriptor
byte[] bytes);

public DeploymentDescriptor (String name, String
extralocation, long timestamp);

public DeploymentDescriptor (DeploymentDescriptor dd);
Create a new descriptor object.

)

String name) ;

String name, long timestamp) ;
String name, long timestamp,

—~ e~~~

name, timestamp, bytes, and extralLocation set the corresponding
fields within this object.

dd is an existing descriptor to clone.
protected GrpFileAccess getDefaultAccessor();
Returns an accessor suitable for EJB group files (.ejbgrp extension).

public static DeploymentDescriptor(]
getDeploymentDescriptors (EJBGRPFileNode ejbGrpNode) ;

Retrieve all the descriptors from an EJB group, or null if there are none.
ejbGrpNode is the EJB group node to examine.

VERSION
The getDeploymentDescriptors method is not available in JBuilder 10.

public static String getFileEncoding (EJBGRPXFileNode node) ;
Discover the encoding used for the XML content of a given EJB group node.

node is the node of interest.

VERSION
The getFileEncoding method is only available in JBuilder 8.

public String getFullName () ;
Find the full path for this descriptor within the JAR file: made up from
“META-INF”, extra location, and name.

AbstractDescriptorConversion Class

The com.borland.jbuilder.enterprise.ejb.AbstractDescriptor-
Conversion class manages the creation and validation of deployment
descriptors for a target application server. It is typically used internally by an
AppServerTargeting class to support its functionality.

WARNING
This class no longer appears in JBuilder 10.

This class’ methods are described below:

public AbstractDescriptorConversion (
DeploymentDescriptor[] dds, EJBGRPFileNode ejbGrpNode,
BuildReport report);
Create a new conversion class.

dds is the array of descriptors to work with from the EJB module.
ejbGrpNode is the EJB module.

262

Part VIII: External Systems

report is the destination for any errors or warnings. It may be nul1l.
protected void addErrorMessage (String message) ;
protected void addWarningMessage (String message) ;
Append a message to the report object supplied during construction, or to
standard error or output if none was specified.

message is the text to display.

public DeploymentDescriptor[] convert (boolean update,
boolean msgOnError) throws Exception;

public DeploymentDescriptor[] convert (boolean update,
boolean msgOnError, boolean ignoreTimestamps) throws
Exception;
This is the main method of this class as it generates the descriptors for the
application server and optionally writes them to the EJB module. It returns
the array of descriptors generated and updated. Usually you would not
override this method, but would just implement the ones that it calls:
generate and patchForAppServer.
update is true to update the EJB module with the changes, or false to not
update it.
msgOnError is true to generate messages when errors occur, or false to not
produce them.
ignoreTimestamps is true to ignore timestamps and always write the
regenerated descriptors to the EJB module, or false (the default) to check the
timestamps before updating,

WARNING
The first convert method is deprecated in favor of the second version.

protected boolean createlInterfaceFromDescriptors (boolean
msgOnError) ;
Creates the internal reference to the EJB descriptor, iEjbJar, during the
convert method processing. Normally you would not override nor call this
method.
msgOnError is true to write any errors to the report object provided during
construction, or false to not write them out.

protected DeploymentDescriptor findDescriptor (
DeploymentDescriptor[] dds, String name);
Locate a particular descriptor from a list and return it, or null if not found.

dds is the array of descriptors to search.
name is the name of the one to find.

protected abstract void generate (ArrayList ddList) throws
Exception;
Create any non—standard descriptors and add them to the list. The standard
ejb-jar.xml entry is already in the list. Throw an exception if a fatal error
is encountered. The convert method calls this one.

ddList is the list of descriptors to update.

Chapter 28: Application Servers 263

public static IJdbclDatasource getBeanDataSource (
IAccessibleBean bean, IEjbJar iEjbJar);
Find and return a datasource reference for a bean, or null if it cannot be
located. None of the classes used here are described in this book.
bean is the bean that uses the datasource.
iEjbJar is the JAR descriptor.

public static String getBeanDataSourceName (
IAccessibleBean bean);
Discover the INDI name for a bean’s datasource from its properties, or null
if none is found.
bean is the bean that uses the datasource.

protected Document getDescriptorDocument (String
fullDescriptorName, ArrayList ddList);
Retrieve a descriptor as an XML document (org.w3c.dom.Document), or
null if it is not located.
fullDescriptorName is the name of the descriptor to return.

ddList is the list of descriptors to search.

protected static JavaFileNode getEjbNode (JBProject project,
String ejbClass);
Find the node for a fully qualified class name if it lies on the source path and
return it, or null if it cannot be found.
project is the project to use the source path from.
ejbClass is the full class name.

protected String getGenericDDName () ;
Provide the name of the generic descriptor for this server. It defaults to
“ejb-jar.xml”.

protected static JotMethod[] getJotMethods (JavaFileNode
node) ;
Extract the public methods from a Java node, or an empty array if none were
found or there is a syntax error in the file.
node is the Java source node to examine.

protected JBProject getProject();
Retrieve the project for this EJB module, or null if no EJB module was
specified during construction.

public static EjbPropertyElement []
getPropertyNamesToSurface (EjbReference ejbRef);
Return an array of property elements for vendor—specific properties, or null
if you do not want the property editor to appear for the user. The returned
class is not described in this book, but is listed in the online help.
ejbRef is a reference to the EJB being reviewed. It may be null. This class
is not discussed in this book.

protected Server getServer();
Retrieve the server for the EjbService for the descriptor’s project, or null
if it cannot be found.

VERSION
The getServer method is only available in JBuilder 9.

264

Part VIII: External Systems

protected boolean isEjbJarDirty();

protected boolean isModuleDirty();
See whether the EJB JAR contents have been modified. They return false
unless changed by the corresponding setter method.

VERSION
The isEjbJarDirty method is deprecated in JBuilder 8 and up in favor of
isModuleDirty, which is not available in JBuilder 7.

protected boolean needToUpdate (DeploymentDescriptor|[]
ddsNew) ;

Based on the descriptor names in the supplied array, determine whether any
of these are missing or old (based on their timestamp) and return true in that
case. Otherwise return false.
ddsNew is the array of descriptors to check.
protected void patchForAppServer (DeploymentDescriptor|[]
ddsRet) ;
Called by convert just before returning the vendor—specific descriptors, this
method lets you perform any post—processing following a successful
conversion. Any changes made here are saved with the EJB module.
ddsRet is the array of descriptors converted.
protected void setEjbJarDirty(boolean ejbJarDirty);
protected void setModuleDirty (boolean moduleDirty);
Note that the contents of the EJB JAR have been altered.
ejbJarDirty or moduleDirty is true to indicate that changes have been
made, or false to reset the flag.

VERSION
The setEjbJarDirty method is deprecated in JBuilder 8 and up in favor of
setModuleDirty, which is not available in JBuilder 7.

protected void updateEjbModule (DeploymentDescriptor|[]
ddsNew) throws Exception;
Add or replace the supplied descriptors in the list for this EJB module.
ddsNew is the array of descriptors to be merged.

public abstract void verifyDeploymentDescriptors (
MessageView mv, MessageCategory mc) throws Exception;
Validate the deployment descriptors obtained during construction and send
any messages to the specified area of the Message Pane. See an example
from the JBoss tool in Listing 28-8.
mv is the Message Pane to write to.

mc is the category under which the messages appear.

These protected fields are available to your subclass:

protected DeploymentDescriptor ddGeneric;
A reference to the specification—compliant descriptor, usually “ejb-
jar.xml”.

protected DeploymentDescriptor[] dds;
The descriptors extracted from the EJB module.

Chapter 28: Application Servers 265

protected long descriptorDate;
The timestamp of the descriptors.

protected DescriptorPair descriptorPair;
The EJB specification compliance level — one of the constants from
DescriptorList

protected EJBGRPFileNode ejbGrpNode;
The EJB module that contains the descriptors.

protected boolean ejbJarDirty;

protected boolean moduleDirty;
Indicates whether anything accessible through iEjbJar below have been
changed, affecting the EJB module.

VERSION
The ejbJarDirty field is deprecated in JBuilder 8 and up in favor of
moduleDirty, which is not available in JBuilder 7.

protected IEjbJar iEjbJar;
Access to the live Borland descriptors.

protected BuildReport report;
The destination for errors and warnings. It may be null if no output is
wanted.

SetupManager Class

Serving as a repository for all the Setup objects (see below) within JBuilder is
the com.borland.jbuilder.ide.SetupManager class. Its methods are all
static, as shown below:

public static void checkShowRestartWarning() ;
Determine whether the restart warning screen should be shown, and show it
if necessary. Afterwards it resets the showRestartWarning flag to false.
public static synchronized Setup getSetup (String name) ;
public static synchronized Setup getSetup (String name,
String parentName) ;
Obtain a reference to a particular setup, or null if it cannot be found.
name is the name of the desired setup.
parentName is the name of the parent setup for which the required one is a
child. If not specified, a setup at the top—most level is located.
public static Personality[] getSetupPersonalities();
Discover the personalities (see Chapter 10) applicable to Setup objects.

VERSION
The getSetupPersonalities method is only available in JBuilder 10.

public static synchronized Setup[] getSetups();

public static synchronized Setup[] getSetups (String
parentName) ;
Retrieve a list of all the registered setups, or an empty array if none are
found.
parentName is the name of a parent setup. If specified, all the setups
registered as sub—pages of this one are returned.

266

Part VIII: External Systems

public static boolean isShowReopenWarning();
Find out whether a reopen warning should be shown — returning true if so, or
false if not.

VERSION
The isShowReopenWarning method is only available in JBuilder 9 and 10.

public static boolean isShowRestartWarning();

Returns true if the restart warning should be shown, or false if it should not.
public static synchronized void registerSetup (Setup setup);
public static synchronized void registerSetup (Setup setup,

String parentName) ;

Register a setup with the manager.

setup is an instance of the new setup class.

parentName is the name of another setup to which this one belongs. If not
specified the setup is registered at the top—most level. Otherwise it becomes a
sub—page of the nominated parent. No error results if the parent does not
exist, allowing for the parent and child to be registered in either order. Only
one level of sub—pages is allowed.

VERSION

In JBuilder 7 and up the setup pages for application servers have been placed
into a new dialog, invoked from the Tools menu as Configure Servers. To make
your server configuration pages appear here instead of in the Enterprise Setup
dialog, specify AppServerSetup.APPSERVER SETUP NAME (from the
com.borland.jbuilder.enterprise.ejb package) as the parent name for
your new Setup class.

public static void setReopenWarningMessage (String message) ;
public static void setRestartWarningMessage (String
message) ;
Add extra text to be displayed in a reopen or restart warning dialog.

message is the text to display.
VERSION

The setReopenWarningMessage and setRestartWarningMessage
methods are only available in JBuilder 9 and10.

public static void setShowReopenWarning (boolean show);
Update whether or not a reopen warning is shown when necessary. If both
this and setShowRestartWarning are set to true, only the restart warning
is shown.

show is true to present it, or false to hide it.

VERSION
The setShowReopenWarning method is only available in JBuilder 9 and 10.

public static void setShowRestartWarning(boolean show) ;
Alter whether the restart warning is displayed. Call this with a value of true
in your setup to indicate that JBuilder should show a warning to the user to
restart JBuilder to complete the setup process. It is displayed when they close
the dialog.

Chapter 28: Application Servers 267

show is true to present it, or false to hide it.

WARNING
Setting this value to false may suppress the warning even if other setups have
requested it.

Setup Class

The abstract com.borland.jbuilder.ide.Setup class lets you supply
custom setup pages for enterprise—level tools by extending it and registering an
instance with the SetupManager. These pages appear in the dialog brought up
by the Tools | Configure Servers menu item. Each one occupies its own tab,
although that may be at the top—most level within the dialog, or embedded within
another page. The difference comes from the choice of property page returned by
this class, and by the registration process.
The methods of this class are listed here:

public PropertyPage createSetupPage (Browser browser);
Provide an instance of the setup page. This is just a public wrapper around
the getSetupPropertyPage method.

browser is the current browser.

VERSION
The createSetupPage method is only available in JBuilder 9 and 10.

public abstract String getName () ;
This is the name of the setup, both for identification purposes in the
SetupManager, and as the text on its tab in the dialog. Implement this in
your subclass.

public PropertyPageFactory getPageFactory (Browser browser) ;
A default factory is included in this class, producing pages by calling the
getSetupPropertyPage method
browser is the current browser.

public Personality[] getPersonalities();
Return the list of personalities to which this setup applies (see Chapter 10).

VERSION
The getPersonalities method is only available in JBuilder 10.

protected abstract PropertyPage getSetupPropertyPage (
Browser browser);
Override this in your subclass to supply a property page for the tool. Note
that the returned page must implement SetupPage (see below). Using
SetupPropertyPage for single-level pages, or NestingSetupProp-
ertyPage for pages that contain other pages as a basis for your pages makes
this easier.
browser is the current browser.

public PropertyPage initializeSetupPage (Browser browser,
PropertyPage page);
This method updates a SetupPage with a description at the top, and the
panel provided by the createSetupPanel method of the page at the

268 Part VIII: External Systems

bottom. It returns null if the provided page is not a descendent of
SetupPage.

browser is the current browser.

page is the SetupPage to initialize.

VERSION
The initializeSetupPage method is only available in JBuilder 9 and 10.

public abstract boolean isEnabled();
Returns true if the setup page should be displayed, or false if it should not
appear at all. Supply this method in your subclass.

public boolean isShowDescription () ;
Determine whether or not the description of the property page should be
shown, returning true to display it, or false to not show it.

public void setShowDescription (boolean showDescription);
Control whether the property page description is displayed.

showDescription is true to display it, or false to hide it.

Two constants also appear in this class:

public static final String CATEGORY;
The name of the global property category for this part of the API.

public static final GlobalProperty
LAST SELECTED SETUP NAME;

The name of the last property page visited.

JBossSetup24 Example

The setup class from the JBoss tool is shown in Listing 28-3.
Listing 28-3. JBossSetup24 class.

Voyager JBoss OpenTool for JBuilder

Copyright (c) 2002 Marcus Redeker, Gedoplan GmbH - Bielefeld,
Germany marcus.redeker@gedoplan.de

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY, without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Cyrille Morvan's excellent 'Kelly JOnAS OpenTool' sources provided
much of the inspiration and some of the code for this OpenTool.

74
package de.gedoplan.opentools.jboss;

import com.borland.primetime.properties.PropertyPage;
import com.borland.primetime.ide.Browser;

import com.borland.jbuilder.ide.Setup;
import com.borland.jbuilder.ide.SetupManager;

Chapter 28: Application Servers 269

import com.borland.jbuilder.enterprise.ejb.AppServerSetup;
import com.borland.jbuilder.info.JBuilderInfo;

import java.io.File;

/**
* JBossSetup returns the property page which is displayed under menu
* Tools/Enterprise Setup
*
* @author Marcus Redeker
(Gedoplan GmbH, Germany)
* @version 1.2
4
public class JBossSetup24 extends Setup {

public JBossSetup24 () {
}

/** JB init */
public static void initOpenTool (byte byteO, byte bytel) {
SetupManager.registerSetup (
new JBossSetup24 (), AppServerSetup.APPSERVER SETUP NAME) ;
}

/** get the property page. */

protected PropertyPage getSetupPropertyPage (Browser aBrowser) {
return new JBossSetupPropertyPage24 (aBrowser) ;

}

/** display name */
public String getName () {

return JBossResource.getDefaultName24 () ;
}

/**
* JBoss OpenTool is enable all the time !
* (if Entreprise is enabled !).
R4
public boolean isEnabled() {
return JBuilderInfo.isEntEnabled() ;
}

public String validatelInstallDirectory(String s) {
return JBossSetupPropertyPage24.validateInstallDirectory(s);
}

public void saveSettings (String s) {
JBossSetupSettings24 jbossSetupSettings =
new JBossSetupSettings24 () ;
jbossSetupSettings.setInstallPath(s) ;
jbossSetupSettings.setConfigName (
JBossPropertyGroup.CONFIGURATION NAME 24.getValue());
JBossSetupPropertyPage24.saveJBossSettings (jbossSetupSettings) ;

}
// eof

SetupPage Interface

The basic abilities of pages that appear in the Configure Servers dialog are
defined by the com.borland. jbuilder.ide.SetupPage interface. Normally
you would use the SetupPropertyPage or NestedSetupPropertyPage
classes (described below) that already implement this as the basis for your own
property pages.

270 Part VIII: External Systems

Its required methods are:

public JPanel createSetupPanel ();
Provide a panel that contains the controls that interact with your tool’s
properties. As this interface is implemented on top of the PropertyPage
class (see Chapter 7), you initialize and persist your settings in the
readProperties and writeProperties methods.

public String getDescription();
Return a general description of the page and its options. This text is
displayed at the top of the page.

SetupPropertyPage Class

When adding a custom property page for your tool, you typically subclass
com.borland.jbuilder.ide.SetupPropertyPage. This abstract class
extends PropertyPage (see Chapter 7) and implements SetupPage. Pages
derived from this appear on their own tabs, though that may be at the top—most
level in the dialog or within another page. For pages that contain sub—pages you
should use the NestingSetupPropertyPage class discussed below.

Initialize your UI as part of the readProperties method and save any
changes in the writeProperties one. These pages are returned from a Setup
object through its getSetupPropertyPage method. The Setup object in turn
is registered with the SetupManager to make it available.

Its new methods (over PropertyPage) are shown below:
public SetupPropertyPage (Browser browser);

Create a new property page for setting up enterprise—level tools.

browser is the browser to associate with this page.
public abstract JPanel createSetupPanel () ;
Provide a panel object that contains the Ul to embed on a tab in the dialog.
Since this class derives from JPanel, you could return this.
protected Browser getBrowser();
Returns the browser set during construction of this object.
public abstract String getDescription();
Supply a description of this page to be displayed at the top of the page.
public JBProject getProject();
Returns the active project at the time of creation if it is a JBProject
instance, or null if it is not.
public abstract boolean isModified();
Implement this method to indicate if any changes have been made that
require action when the dialog is closed. Return true if changes were made,
or false if nothing was altered.

NestingSetupPropertyPage Class

To allow other pages to be embedded in your property page in the Setup dialog,
you should derive your page from com.borland.jbuilder.ide.Nesting-
SetupPropertyPage. Another abstract class, this one extends Nesting-
PropertyPage (see Chapter 7) and implements SetupPage.

Chapter 28: Application Servers 271

You register the Setup object that generates your parent class with
SetupManager, and then register the Setup object for each sub—page as well,
supplying the name of the parent Setup in the process.

Its methods are as follows:
public NestingSetupPropertyPage (Browser browser, Setup

setup) ;

Create a new property page that manages a set of sub—pages for setting up

enterprise—level tools.

browser is the browser to associate with this page.

setup is the object creating this page.
public JPanel createSetupPanel ();

Constructs a panel that contains the description at the top and a tabbed pane

at the bottom, filled with the SetupPropertyPages registered under the

Setup that created this page.
public abstract String getDescription();

Supply a description of this page to be displayed at the top of the page.

Summary

Interfacing with an application server through the OpenTools API allows you to
integrate that server into JBuilder. You can then configure it, modify the
deployment descriptors it needs, deploy applications to it, and run or debug them,
all from within the JBuilder IDE.

There are a lot of classes and interfaces involved in this section of the API
and only the main ones have been discussed here. Several of those mentioned
here are documented in JBuilder’s online help, although many are not.

The JBoss example used throughout this chapter demonstrates how to go
about creating an application server adapter and registering it with JBuilder.
Look through the full code on the accompanying Web site to gain a deeper
understanding of its functions.

272 Part VIII: External Systems

e
*Q § &+
= L zf; :i

274 Appendices

Differences in the OpenTools API arise as each new version of JBuilder is
released. This is reflected in the major and minor version numbers for the
OpenTools API as shown in Table B—1. Recall that JBuilder versions prior to 7

are not covered in this book.

As well as changes to the
packages and classes present in the
API, the documentation of these
items also changes. Once a section
of the API is documented it needs
to remain fairly static in future
versions, so that tools have a
reasonable expectation of working
there. Thus, much of the
OpenTools API remains
undocumented, due to both lack of
time and to possible changes as the
API evolves. To help come to grips
with all these changes Table B-2 is
presented.

Table B—1. OpenTools versions

JBuilder version

© 0o N o O b

-
o

Major

4

O L L L

OpenTools version

Minor
1

N O g~ WDN

The columns under each version indicate whether a class is defined in that
version (M) and whether it is documented in that version (EJ). Only the classes
and interfaces (in italics) that are documented in at least one version of JBuilder
are shown below. For classes that are not listed, the documentation status of that
class remains the same throughout the JBuilder versions, either described in all
versions or in none. Items marked “?” for the documentation have references to
the appropriate HTML page, but I couldn’t reach it in my copy of JBuilder.

Table B—2. OpenTools API class differences

Class

com.borland.jbuilder.build

Antifiable
ArchiveOutputEvent
BuildMessage

275

JB7

JB 8

M

JB9

M
M
M

JB 10

M
M
M

276 Appendices

Class
EarOutputEvent
EjbOutputEvent
ExternalProcessTask
OutpathDirectoryDeletedEvent
PackageDeletedEvent
ParseError

com.borland.jbuilder.enterprise
BasicDeploymentDescriptor

com.borland.jbuilder.enterprise.descriptor
Domains

com.borland.jbuilder.enterprise.descriptor.

application.wrapper
ApplicationClientModuleWrapper
ApplicationWrapper
CommonModuleWrapper
ConnectorModuleWrapper
EjbModuleWrapper
WebModuleWrapper

com.borland.jbuilder.enterprise.descriptor.

client.wrapper
ApplicationClientWrapper

com.borland.jbuilder.enterprise.descriptor.

common
BaseNodeType

com.borland.jbuilder.enterprise.descriptor.

common.wrapper
CommonEjbRefWrapper
DescribedWrapper
DisplayableWrapper
EjbLocalRefWrapper
EjbRefWrapper
EnvEntryWrapper
IdentifiedWrapper
ResourceEnvRefWrapper
ResourceRefWrapper
RunAsWrapper
SecurityPermissionWrapper
SecurityRoleRefWrapper
SecurityRoleWrapper

JB 8
M
M
M
M
M

JB9
M
M

M
M
M

JB 10

M
M
M

M
M
M
M
M
M

M

M

M
M
M
M
M
M
M
M
M
M
M
M
M

Appendix B: JBuilder Documentation Version Differences

277

Class

com.borland.jbuilder.enterprise.descriptor.
connector.wrapper

AuthenticationMechanismWrapper
ConfigPropertyWrapper
ConnectorWrapper
LicenseWrapper
ResourceAdapterWrapper

com.borland.jbuilder.enterprise.descriptor.
ejb.wrapper

CmpFieldWrapper
CmrFieldWrapper
ColumnMappingWrapper
CommonAccessibleEjbWrapper
CommonAssemblyMethodWrapper

CommonAssemblyMethodWrapper.
CommonAssemblyMethodNode
DisplayNameResolver

CommonEjbWrapper
CommonFieldWrapper
CommonMethodWrapper

CommonMethodWrapper.
CommonMethodNodeDisplayNameResolver

ContainerTransactionMethodWrapper
ContainerTransactionWrapper
EjbJarWrapper
EntityBeanWrapper
ExcludeListMethodWrapper
ExcludeListWrapper
FinderWrapper
MessageDrivenBeanWrapper
MethodPermissionMethodWrapper
MethodPermissionWrapper
QueryMethodWrapper
QueryWrapper

QueryWrapper.
QueryNodeDisplayNameResolver

RelationshipRoleSourceWrapper
RelationshipRoleWrapper
RelationshipWrapper
SecurityldentityWrapper
SessionBeanWrapper

JB 7

JB 8

JB9

JB 10

M
M
M
M
M

M
M
M
M
M
M

M
M
M
M

M
M
M
M
M
M
M
M
M
M
M
M
M

M
M
M
M
M

278 Appendices

Class JB7 | JB8 | JBY9 | JB10
TableReferenceWrapper - - - MDD

com.borland.jbuilder.enterprise.descriptor.

war.wrapper
AuthConstraintWrapper - - - M
CommonParamWrapper - - - M
ContextParamWrapper - - - M
ErrorPageWrapper - - - M
FilterMappingWrapper - - - M
FilterWrapper - - - M
FormLoginConfigWrapper - - - ML
InitParamWrapper - - - M
ListenerWrapper - - - M
LoginConfigWrapper - - - M
MimeMappingWrapper - - - M
SecurityConstraintWrapper - - - M
ServletMappingWrapper - - - M
ServletWrapper - - - MDD
SessionConfigWrapper - - - M
TagLibWrapper - - - M
UserDataConstraintWrapper - - - M
WebAppWrapper - - - M
WebResourceCollectionWrapper - - - M
WelcomeFileListWrapper - - - M

com.borland.jbuilder.enterprise.ejb
AbstractDescriptorConversion M MDD MDD -
AbstractDescriptorimporter M M M -
AppServerTargeting ML M M -
DeployConstants M M M -
EjbPropertyElement MDD MDD MDD -

com.borland.jbuilder.enterprise.module
DescriptorsManagedModelNodeReference - - - MDD
ModuleDirectoryNode - - ™ M
ModuleNode - - %] M
ModulePropertyGroup - - 4] ML
ModuleType - - 4] MDD
ModuleWizardContext - -] M

com.borland.jbuilder.enterprise.module.

application
ApplicationModuleNode - - 4| ML
ApplicationModuleType - - ™ ML

Appendix B: JBuilder Documentation Version Differences

279

Class
ApplicationModuleType.Feature
ApplicationModuleType.SpecFeature
ApplicationModuleUtils

com.borland.jbuilder.enterprise.module.
application.legacy

LegacyEarDeploymentDescriptor

com.borland.jbuilder.enterprise.module.
client

ApplicationClientModuleNode
ApplicationClientModuleType
ApplicationClientModuleType.Feature
ApplicationClientModuleType.SpecFeature
ApplicationClientModuleUtils

com.borland.jbuilder.enterprise.module.
connector

ConnectorModuleNode

ConnectorModuleType

ConnectorModuleUtils
com.borland.jbuilder.enterprise.module.ejb

DataSourceWrapper

EjbModuleNode

EjbModuleType

EjbModuleUtils

EjbReference

com.borland.jbuilder.enterprise.module.
ejb.legacy

LegacyEjbDeploymentDescriptor

com.borland.jbuilder.enterprise.module.
legacy

LegacyAbstractDeploymentDescriptor
com.borland.jbuilder.enterprise.module.web

WebModuleNode

WebModuleType

WebModuleUtils
com.borland.jbuilder.node

BinaryResourceFileNode

CPPFileNode

JavaScriptFileNode

SoundFileNode
com.borland.jbuilder.paths

ProjectPathSet

JB 7

M
M
M
M

JB 8

M
M
M
M

JB9

JB 10
M
M
M

M

M
M
M
M
M

M
M
M

M
M
M
M
M

M
M
M

280 Appendices

Class
com.borland.jbuilder.repository
ClassEntry
PackageEntry
SourceEntry
com.borland.jbuilder.runtime.servlet
ContextDescriptor
ContextDescriptor.DDException
ServletDescriptor
WebXmlHelper
com.borland.jbuilder.server
ServerCommandLineTool
Service.Dependency
ServiceDependency
com.borland.jbuilder.web
DeploymentDescriptorSupport
DescriptorReader
DescriptorWriter
com.borland.jbuilder.web.xml
WebXmlISupport
com.borland.primetime.build
BuildInformation
BuildOutputEvent
BuildProcess.Target
ClassOutputEvent
com.borland.primetime.editor
BookmarkManager
ColorSet
EditorActions.AddBookmarkAction
EditorActions.ClearBookmarksAction
EditorActions.FormatFileAction
EditorActions.ReturnKeyAction
EditorActions.ToggleBookmarkAction
com.borland.primetime.ide
ProjectGroupBrowserListener
com.borland.primetime.insight.template
TemplateActions.CreateTemplateAction
TemplateManager
com.borland.primetime.node
BinaryResourceFileNode
GenericResourceFileNode

JB 7

NN

M
M
M
M

M
M
M

M

JB 8

M
M
M

JB9

M
M
M

M
M

JB 10

M
M
M

M
M
M
M

M
M

Appendix B: JBuilder Documentation Version Differences

281

Class
ProjectGroup
ProjectGroupListener
SoundFileNode
com.borland.primetime.properties
GlobalColorProperty
NodeArrayPropertyDefault
com.borland.primetime.teamdev.vcs
VCSEventNotifier
VCSRenameNotifier
com.borland.primetime.vfs
CaseChangeException
com.borland.primetime.wizard
SummaryPage
com.borland.primetime.xmt...

*

JB 7

JB 8
ML
9]

]

JB9
M
M
M

M
M

JB 10
M
M
M

M
M

M
M

The PrimetimeHelp class covered in Chapter 8 contains a large number of
zipHelpTopic fields as shown in Table C—1. They bring up topics that apply to
the underlying framework, and so would be applicable to any IDE developed on
top of it. Also indicated in the table is the version of JBuilder in which these
fields first became available. To display any one of these you can use code like
the following:

HelpManager.showHelp (PrimetimeHelp.TOPIC DPrint);

The field names all start with “TopIC ” followed by either a “D” or “0”. It
appears as though the latter identify the topics as applying to a complete dialog,
or to an embedded option page. Topics for which no page display resulted are
marked as “Cannot be found”.

All the topics reside in the User Guide documentation, for which the
following field from the same class provides a reference:

public static final ZipHelpBook BOOK UserGuide;

Table C—1. Topic fields in PrimetimeHelp

Field For Help On Vers

TOPIC_Build Build page (Preferences dialog) 10

TOPIC_CodeFormattingBasic Formatting page (Project Projects 8
dialog)

TOPIC_DAddCustomExtension Add Custom Extension dialog 10

TOPIC_DAddEditBookmark Add/Edit Bookmark dialog 10

TOPIC_DAddToFavorites Add to Favorites dialog 10

TOPIC_DBrowseProjectChanges Browsing project changes for version 5
control

TOPIC_DCC_AddFiles Add files under ClearCase 8

TOPIC_DCC_ApplyVersionLabel Applying a version label under 5
ClearCase

TOPIC_DCC_CheckinFiles Checking files into a repository under 5
ClearCase

TOPIC_DCC_CheckoutFiles Checking files out of a repository under 5
ClearCase

282

Appendix C: Help Topics

283

Field
TOPIC_DCC_HijackFiles
TOPIC_DCC_MergeFiles
TOPIC_DCCAddEditViews

TOPIC_DCCConfigure
TOPIC_DCCPlaceProject

TOPIC_DCCProjectForClearCase
TOPIC_DCCPullPostJPX
TOPIC_DCCPUulIProject

TOPIC_DCCTeamMenu
TOPIC_DCommitProject

TOPIC_DCompareFiles
TOPIC_DCreatelocallLabel
TOPIC_DCVS_AddFiles

TOPIC_DCVS_ApplyVersionLabel
TOPIC_DCVS_CheckinFiles

TOPIC_DCVS_CheckoutFiles

TOPIC_DCVS_CreateBranch
TOPIC_DCVS_CVSNotFound
TOPIC_DCVS_DeleteVersionLabel
TOPIC_DCVS_ Installinstructions
TOPIC_DCVS_MergeFiles
TOPIC_DCVS_MergeWorkspace
TOPIC_DCVS_MoveVersionLabel
TOPIC_DCVS_RemoveFiles

TOPIC_DCVS_UpdateSpecial
TOPIC_DCVSConfigure

TOPIC_DCVSCreateRepos
TOPIC_DCVSFileStatus
TOPIC_DCVSPlaceProject

TOPIC_DCVSPIlaceProjectStep1

For Help On
Hijacking files under ClearCase
Merging file versions under ClearCase

Adding and editing views under
ClearCase

Viewing the ClearCase version control
configuration

Placing a project into a repository under
ClearCase

Project for ClearCase wizard
Pulling and posting a project file

Pulling a project from version control
under ClearCase

The ClearCase Team menu

Committing a project under version
control

Comparing any two files
Create New Label dialog

Adding files to version control under
CVsS

Applying a version label under CVS

Checking files into a repository under
CVs

Checking files out of a repository under
Cvs

CVS Create Branch dialog

CVS Not Found dialog

Delete Version Label dialog
Installing and configuring CVS
Merging file versions under CVS
Merge dialog

Move Version Label dialog

Removing files from version control
under CVS

Update Special dialog

Viewing the CVS version control
configuration

Creating a local repository for CVS
Checking a file’'s CVS status

Placing a project into a repository under
CVsS

Placing a project into a repository under
CVS —first step

Vers

OO © © 01 A © 00 ©

o ©

284 Appendices

Field
TOPIC_DCVSPlaceProjectStep2

TOPIC_DCVSPlaceProjectStep3
TOPIC_DCVSPullProject
TOPIC_DCVSPullProjectStep1
TOPIC_DCVSPullProjectStep2
TOPIC_DCVSPUullProjectStep3
TOPIC_DCVSPUullProjectStep4

TOPIC_DCVSTeamMenu
TOPIC_DDirectoryView

TOPIC_DFileSaveAs
TOPIC_DFindText
TOPIC_DGotoBookmark
TOPIC_DLocallLabels
TOPIC_DNewFile

TOPIC_DNewFolder
TOPIC_DOrganizeFavorites
TOPIC_DPagelLayout
TOPIC_DPagelayoutAdvanced
TOPIC_DPrint
TOPIC_DRenameFavorites
TOPIC_DReplaceText
TOPIC_DRevert
TOPIC_DRevertToTip
TOPIC_DRuntimeConfigs
TOPIC_DSelectConfig
TOPIC_DSelectDir
TOPIC_DSelectFile
TOPIC_DSelectNode
TOPIC_DSelectProjectVCS

TOPIC_DSelectReopen
TOPIC_DSrchPath
TOPIC_DSwitchBuffer
TOPIC_DTeamMenu

For Help On

Placing a project into a repository under
CVS - second step

Placing a project into a repository under
CVS - third step

Pulling a project from version control
under CVS

Pulling a project from version control
under CVS — first step

Pulling a project from version control
under CVS — second step

Pulling a project from version control
under CVS - third step

Pulling a project from version control
under CVS - fourth step

The CVS Team menu

Directory View page (Project Properties
dialog)

Save Copy As dialog

Find Text dialog
Bookmarks dialog

Manage local Labels dialog
Create New File dialog

Create New Folder dialog

Organize Favorites dialog

Page Layout page (Page Layout dialog)
Advanced page (Page Layout dialog)
Print dialog

Rename Favorite dialog

Find/Replace Text dialog

Revert Confirmation dialog

Revert Confirmation dialog

Run page (Project Properties dialog)
Choose Runtime Configuration dialog
Select Directory dialog

File Selection dialog

Add Files or Packages to Project dialog

Selecting a version control system for a
project

Select File dialog
Find In Path dialog
Switching buffers
Cannot be found

Vers

10
10

only

N -
o-b-b\loo

N NN NN O NN

—
N~ b3

Appendix C: Help Topics

285

Field
TOPIC_DUrliChooser
TOPIC_DVersionControl
TOPIC_DVSS_AddFiles

TOPIC_DVSS_ApplyVersionLabel
TOPIC_DVSS_CheckinFiles

TOPIC_DVSS_CheckoutFiles
TOPIC_DVSS RemoveFiles
TOPIC_DVSSConfigure
TOPIC_DVSSPlaceProject

TOPIC_DVSSPlaceProjectCheckout
Files

TOPIC_DVSSPlaceProjectinclude

TOPIC_DVSSPlaceProjectLocation
TOPIC_DVSSPlaceProjectRunPath
TOPIC_DVSSPlaceProjectSelectDir

TOPIC_DVSSPlaceProjectUsername
TOPIC_DVSSPullPostJPX

TOPIC_DVSSPullProject
TOPIC_DVSSPullProjectDatabaseDir

TOPIC_DVSSPUullProjectRunPath
TOPIC_DVSSPUullProjectTargetDir
TOPIC_DVSSPullProjectUsername
TOPIC_DVSSPullProjectVSSProj
TOPIC_DVSSTeamMenu
TOPIC_DVSSUndoCheckout
TOPIC_FileAssociation
TOPIC_GObjectGallery
TOPIC_HistoryPane
TOPIC_KeymapEditorKeyStroke
TOPIC_KeymapEditorMain
TOPIC_LookAndFeel
TOPIC_OAudioFeedback

For Help On
Cannot be found
Team page (Project Properties dialog)

Adding files to version control under
VSS

Applying a version label under VSS

Checking files into a repository under
VSS

Checking files out of a repository under
VSS

Removing files from version control
under VSS

Viewing the VSS version control
configuration

Placing a project into a repository under
VSS

Selecting files to keep checked out

Selectring directories and files to
include

Select location in VSS database
Setting the path to the runtime directory

Select Visual SourceSafe database
directory

Enter username and password

Pulling and posting the project file under
VSS

Pulling a project from version control
under VSS

Select Visual SourceSafe database
directory

Setting the path to the runtime directory
Select an empty target directory

Enter username and password

Select Visual SourceSafe project

The VSS Team menu

Undoing a checkout under VSS
Configure File Associations dialog
Object Gallery dialog

History tab in the Content Pane
Cannot be found

Keymap Editor dialog

Look & Feel page (Preferences dialog)
Audio page (IDE Options dialog)

Vers

© © B~ O g OO ©© ©

—
o o

286 Appendices

Field
TOPIC_OBrowser
TOPIC_OCatalogFiles

TOPIC_OCodelnsightKeysSelect
Keystroke

TOPIC_OCodeTemplate
TOPIC_OCodeTemplateAdd
TOPIC_OCodeTemplateCommon

TOPIC_OCodeTemplateEdit
TOPIC_OCodeTemplateHtm|

TOPIC_OCodeTemplatelnsertMacro
TOPIC_OColor

TOPIC_ODisplay

TOPIC_OEditor
TOPIC_OEjbModeler

TOPIC_OFileType
TOPIC_OKeyMapping
TOPIC_OProjectEditor
TOPIC_OPublicldCatalog

TOPIC_OSchemaCatalog

TOPIC_OSelectFileTypes
TOPIC_OSystemldCatalog

TOPIC_OTaglnsight
TOPIC_OUmI
TOPIC_Personality
TOPIC_PersonalityAdvanced
TOPIC_SaveWorkspaceAs
TOPIC_ToolOptions
TOPIC_ToolProperties
TOPIC_WExportToAnt
TOPIC_WEXxportToAnt2

TOPIC_XMT_NODE_TYPE_LIST
FORM

For Help On
Browser page (IDE Options dialog)

XML: Oasis Catalog Files page
(Preferences dialog)

Cannot be found

Templates page (Editor Options dialog)
Add Code Template dialog

Templates: Common page (Preferences
dialog)

Edit Code Template dialog

Templates: HTML page (Preferences
dialog)

Insert Macro dialog

Color page (Editor Options dialog)
Display page (Editor Options dialog)
Editor page (Editor Options dialog)

EJB Designer page (Preferences
dialog)

File Types page (IDE Options dialog)
Keymapping page (Preferences dialog)
Editor page (Project Properties dialog)

XML: Public ID Catalog page
(Preferences dialog)

XML: Schema Catalog page
(Preferences dialog)

Select File Types dialog

XML: System ID Catalog page
(Preferences dialog)

Taglnsight page (Preferences dialog)
UML page (IDE Options dialog)
Personality page (Preferences dialog)
Personality Configurations dialog
Save Workspace As dialog

Configure Tools dialog

Add/Edit Tool dialog

Export to Ant wizard

Specify Generation Actions (Export to
Ant wizard)

List of Elements page

Vers

10

o b~ M b ©

10

10

10

10
10

10

10
10
10
10
10
10
10

10

Tools OpenTool

The XMLTools OpenTool provides additional support for XML files within
JBuilder. It adds menu items to the popup menus in the Project Pane and in the
Content Pane, allowing you to validate the current XML node, or to open its
DTD or stylesheet. It also adds an XSLT viewer tab for XML nodes, letting you
specify an XSL transformation to apply to your XML, and view the results in
both source and rendered form. This appendix describes the workings of the tool
as a whole.

NOTE
Some of these features are now available in JBuilder as standard.

In Chapter 7 the properties of the XMLTools utility were discussed. There are
four global properties defined: one for the list of available XML validators, one
for the list of XSL transformation engines, and two others being the indexes into
these lists for the items currently selected. They are grouped together and
declared in the XMLToolsPropertyGroup class. The corresponding
XMLToolsPropertyPage class supplies a Ul wherein the user can easily alter
these settings.

In Chapter 14 its additions to the Project Menu are examined. The tool adds
three items to the Project Pane popup menu when activated with a single XML
node selected: Validate XML, Open DTD/Schema, and Open XSL Stylesheet.
These same items appear in the popup menu within the editor in the Content Pane
as well (when it contains XML). The first item calls on the current XML
validator to check that the node contains valid XML. The other two open up
secondary documents referred to by the main XML: either the DTD or XML
Schema defined for the document, or the XSL Transformation that it prefers to
use. Their menu items are disabled if no such references can be found in the
current document.

XMLValidator Interface

Since there are a number of XML parsers and validators available, the tool is
designed to allow any of these to be plugged into it. It accomplishes this aim by
defining the XMLVvalidator interface as shown in Listing D-1. The only
requirements are a name for display purposes and a method to actually perform

287

288 Appendices

the validation. The document to work with arrives as a SAX input source and an
exception is thrown (preferably a SAXParseException) if a problem is
detected.

Listing D-1. The XMLValidator interface.

package wood.keith.opentools.xmltools;

import org.xml.sax.InputSource;

/**
* Interface for validating an XML document.
*
* @author Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 16 October 2000
* @version 2.0 15 February 2002
*/
public interface XMLValidator ({
/**
* Validate an XML document.
*
* @param xmlDocument a source representing the XML document
* to be validated
* @throws Exception when an error occurs, may be a
& SAXParseException showing line and column
b where the error occurred
*/

public void validate (InputSource xmlDocument) throws Exception;

/**

* Return a description for this validation implementation.
*

* @return the implementation's description
R4
public String getValidatorName () ;
}

To add an actual validator to the XMLTools suite, all you do is implement this
interface around your favorite parser and ensure that the new class appears on
JBuilder’s classpath. Then in the tool’s property page you specify the full name
of the new class and select it as the one to use for subsequent validations. Listing
D-2 shows how you might wrap the Xerces (http://xml.apache.org/
xerces—7j/index.html) parser to have it perform the validation for you.

Listing D-2. Validation using Xerces 2.

package wood.keith.opentools.xmltools;

import org.apache.xerces.parsers.SAXParser;

import org.xml.sax.ErrorHandler;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

*

/
Xerces 2 implementation for validating an XML document.
For more details see http://xml.apache.org/xerces-j/index.html.

@author Keith Wood (kbwood@iprimus.com.au)
@version 1.0 16 October 2000
@version 2.0 15 February 2002

R

4
public class XMLXerces2Validator implements XMLValidator, ErrorHandler {

// Singleton parser
private static SAXParser parser = null;

Appendix D: XML Tools OpenTool 289

/**
* Validate an XML document.
*
* @param xmlDocument a source representing the XML document
* to be validated
* @throws Exception when an error occurs, may be a SAXParseException
& showing line and column where the error occurred
*/

public void validate (InputSource xmlDocument) throws Exception ({
// And parse it
getParser () .parse (xmlDocument) ;

}

/**
* Return the singleton parser.
*

* @return the validating parser object

*/
private SAXParser getParser () throws SAXException ({
if (parser == null) {

// Create a new parser
_parser = new SAXParser();
// Turn on validation
_parser.setFeature ("http://xml.org/sax/features/validation", true);
// Set error handler
_parser.setErrorHandler (this) ;
}
return parser;

}

/**
* Return a description for this validation implementation.
*

* @return the implementation's description
74
public String getValidatorName () {
return "Xerces 2 (SAX) from Apache";
}

/**
* Implement ErrorHandler warning notification.
*

* @param exception the generated warning
*/
public void warning (SAXParseException exception) throws SAXException ({
throw exception;
}

/**
* Implement ErrorHandler error notification.
*
* @param exception the generated error
R4
public void error (SAXParseException exception) throws SAXException {
throw exception;
}

/**
* Implement ErrorHandler fatal error notification.
*

* @param exception the generated fatal error
74
public void fatalError (SAXParseException exception) throws SAXException

throw exception;

290 Appendices

XSLTViewerFactory Class

The other main feature of the XMLTools package is a custom node viewer that
supports XSL Transformations. It appears as a viewer tab named XSLT when an
XML document is opened (see Figure D—1). Within it are three sub—tabs: one to
show the results of the transformation as HTML or plain text, one to display the
source behind that rendered view, and the last to hold the text of the XSLT
document. You may enter the name of the XSLT file to use (it defaults to the one
specified in the original XML document), or browse for it through the controls
along the top of the form. When you are ready you press the Apply button to
invoke the currently selected transformation engine (as set through the property
page).

Figure D—1. The XSLT node viewer.

a DelphiExam |

HSLT document | CKeith:MLBookIExarm R eview xs| || Browse... || Apply |

Fs

Delphi Exam Review

Description: These questions test your lmowledge of Delphi.
This test has a pass mark of 66%.

Questions are asked in random order.

Instructions: Please answer every question.

® Chiestion 01
® Cuestion 02
® Cuestion 03

Ouestion Q1

QUErY: yhat iz the value of i at the end of this code?
for i := 1 to 5 do
if i = 2 then
Continue
elzse if 1 = 4 then

EBrealk;

[4]

E i
| view | source | Template |

| ¥

| Source | History | XSLT |

Appendix D: XML Tools OpenTool 291

As with the XML validation, there are several transformation engines available.
So another interface defines the required abilities, leaving an adapter class to
cater for each individual implementation. The XSLTransformer interface (see
Listing D-3) is just like the validation one, requiring a name for display purposes
and a method to invoke the transformation. The results of the processing are
returned as a string value.

Listing D-3. The XSLTransformer interface.

package wood.keith.opentools.xmltools;

import org.xml.sax.InputSource;

/**
* Interface for applying an XSL Transformation to a document.
*
* @author Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 16 October 2000
* @version 2.0 15 February 2002
/
public interface XSLTransformer {
/**
* Apply an XSL transformation to a document.
*
* @param xmlDocument a source representing the XML document
* to be transformed
* @param xslDocument a source representing the XSL transformation
* @return the text resulting from the transformation process
* @throws Exception when an error occurs, may be a
b SAXParseException showing line and column
24 where the error occurred
R4

public String transform(InputSource xmlDocument,
InputSource xslDocument) throws Exception;

/**
* Return a description for this transformation implementation.
*

* @return the implementation's description
R4
public String getTransformerName () ;

}

To integrate the node viewer into JBuilder, you start with a node viewer factory —
XSLTViewerFactory in this case (see Listing D—4). Its OpenTools initialization
routine registers an instance of itself with the Browser class. When a new node
is opened the factory’s canDisplayNode method is called and returns true if

that node is XML-based. Once accepted, the createNodeViewer method
returns a new instance of the actual node viewer.

Listing D—4. A factory for the node viewer.

package wood.keith.opentools.xmltools;

import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import java.text.MessageFormat;

import java.util.EventListener;

import javax.swing.JOptionPane;

import javax.swing.event.EventListenerList;

import com.borland.primetime.PrimeTime;

import com.borland.primetime.ide.Browser;

import com.borland.primetime.ide.Context;

import com.borland.primetime.ide.NodeViewer;

import com.borland.primetime.ide.NodeViewerFactory;

292 Appendices

import com.borland.primetime.node.Node;
import com.borland.primetime.node.TextFileNode;

/**
* Create a page for applying XSLT transformations to XML documents.
*
* @author Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 16 October 2000
* @version 2.0 15 February 2002
/

public class XSLTViewerFactory implements NodeViewerFactory {

/** The name of the transformer property. */
public static final String XSL_ TRANSFORMER PROP = "xslTransformer";

/* Messages. */

private static final String CAPTION = "XML Tools";

private static final String TRANSFORMER MISSING =
"XSLTransformer class not found\n{O0}";

private static final String TRANSFORMER BUILD =
"XSLTransformer class not created\n{0}";

/** Listeners for transformer changes. */
private static EventListenerList listenerList =
new EventListenerList ()

/** The XSL transformation object. */
private static XSLTransformer _xslTransformer = null;

/** The viewer factory object. */
private static XSLTViewerFactory xsltViewerFactory =
new XSLTViewerFactory();

/** Static initialisation. */
static {
// Find the name of the XMLValidator class
String[] transformerList =
XMLToolsPropertyGroup. TRANSFORMER LIST.getValues () ;
int index = XMLToolsPropertyGroup.TRANSFORMER.getInteger () ;
String transformerClass = (index < transformerList.length ?
transformerList [index] : XMLToolsPropertyGroup.DEFAULT TRANSFORMER) ;
// And create an instance of it
setTransformer (transformerClass) ;

/**
* Register this factory as a NodeViewer factory.
*
* @param majorVersion the major version of the current OpenTools API
* @param minorVersion the minor version of the current OpenTools API

R4
public static void initOpenTool (byte majorVersion, byte minorVersion) {
if (majorVersion != PrimeTime.CURRENT MAJOR VERSION) {
return;

}

Browser.registerNodeViewerFactory(xsltViewerFactory) ;

if (PrimeTime.isVerbose()) {
System.out.println ("Loaded XSLT Viewer v" + XMLTools.VERSION) ;
System.out.println ("Written by Keith Wood (kbwood@iprimus.com.au)");

—

*

One of the functions needed to implement NodeViewerFactory.
Use this function to tell the Browser if this factory can
view a certain node.

@param node the node the Browser will open
@return true if this factory can create a viewer for this node,
false otherwise.

* % Sk Gk Gk % % %

Appendix D: XML Tools OpenTool 293

4

public boolean canDisplayNode (Node node) {
return XMLTools.isXmlNode (node) ;

}

*

/
One of the functions needed to implement NodeViewerFactory.
Used to create the viewer for the node that is described

by a context. The viewer created is of type XSLTNodeViewer.

@param context the context that describes the node.
@return a NodeViewer capable of viewing this node, or
null if the viewer creation fails.

* % Sk Sk Gk % % %

/
public NodeViewer createNodeViewer (Context context) {
Node node = context.getNode () ;
if (canDisplayNode (node)) {
return new XSLTNodeViewer (context, (TextFileNode)node) ;
}
return null;

}

/**
* Instantiate the transformer class.
*

* @param transformerClass the name of the XSLTransformer class
/
public static void setTransformer (String transformerClass) {

try {
XSLTransformer oldXslt = _xslTransformer;
_xslTransformer = null;
_xslTransformer =

(XSLTransformer)Class.forName (transformerClass) .newInstance () ;
firePropertyChange (XSL TRANSFORMER PROP, oldXslt, xslTransformer);
0ldxslt = null; -

}
catch (ClassNotFoundException cnfe) {
JOptionPane.showMessageDialog (Browser.getActiveBrowser (),
MessageFormat.format (TRANSFORMER MISSING, new Object[]
{cnfe.getMessage () }), CAPTION, JOptionPane.ERROR MESSAGE) ;
}
catch (Exception ex) {
ex.printStackTrace () ;
JOptionPane.showMessageDialog (Browser.getActiveBrowser (),
MessageFormat.format (TRANSFORMER BUILD, new Object[]
{ex.getMessage () }), CAPTION, JOptionPane.ERROR MESSAGE) ;

}

/**
* Retrieve the XSL Transformation object.
*
* @return the current XSLTransformer object
*/

public static XSLTransformer getTransformer () {
return xslTransformer;

}

/**
* Add a PropertyChangelListener to the listener 1list.
* The listener is registered for all properties.
*
* @param listener the PropertyChangelListener to be added
74
public static void addPropertyChangelistener (
PropertyChangelistener listener) ({
_listenerList.add(PropertyChangelListener.class, listener);
}

/**

294

Appendices

* Remove a PropertyChangelListener from the listener 1list.

* This removes a PropertyChangelListener that was registered
* for all properties.
*
*

@param listener the PropertyChangeListener to be removed

*/

public static void removePropertyChangelistener (

}
/

PropertyChangelistener listener) ({
_listenerList.remove (PropertyChangelListener.class, listener);

* K

* Report a bound property update to any registered listeners.
* No event is fired if old and new are equal and non-null.

*

* @param propertyName the programmatic name of the property
b that was changed

* @param oldValue the old value of the property

* @param newValue the new value of the property

/

public static void firePropertyChange (String propertyName,

}

The remaining methods keep track of the currently selected transformation
engine, and inform registered listeners when that value changes. Transformation
implementations are identified by class name, so problems may arise when
attempting to convert this into an actual class instance. Interested parties can

Object oldvValue, Object newValue) {

if (oldvalue != null && newValue != null &&
oldValue.equals (newValue)) {
return;

}

EventListener[] listeners =

_listenerList.getListeners (PropertyChangeListener.class) ;
PropertyChangeEvent event = null;
for (int index = 0; index < listeners.length; index++) {

if (event == null) {

event = new PropertyChangeEvent (
_xsltViewerFactory, propertyName, oldValue, newValue);
}

((PropertyChangeListener)listeners[index]) .propertyChange (event) ;

retrieve the current setting through the getTransformer method.

XSLTNodeViewer Class

The factory returns an instance of the XSL.TNodeViewer class when appropriate.
It extends AbstractNodeViewer and supplies the name and tooltip for the new
viewer tab, along with a component to place in the Content Pane, and a null for

the

Structure Pane component to indicate that nothing appears there.

Listing D-5. The XSLT node viewer.

package wood.keith.opentools.xmltools;

import javax.swing.JComponent;
import javax.swing.JOptionPane;

import com.borland.primetime.ide.Browser;

import com.borland.primetime.ide.Context;

import com.borland.primetime.node.TextFileNode;

import com.borland.primetime.viewer.AbstractNodeViewer;

/**

Appendix D: XML Tools OpenTool 295

* XSLTNodeViewer is a wrapper around XSLTViewer, which is
* the class that implements the low level details of managing
* a viewer, in this case a tabbedpane and several editorpanes.
*
* @author Keith Wood (kbwood@iprimus.com.au)
* @version 1.0 16 October 2000
* @version 2.0 15 February 2002
/
public class XSLTNodeViewer extends AbstractNodeViewer {
/**
* Title and longer description for the viewer tab.
/
private static final String TAB_TITLE = "XSLT";
private static final String TAB DESC = "XSLT processing";
/**
* Messages.
/

private static final String TRANSFORMER MISSING =
"XSLTransformer class not found";

/** The implementation of the lower level viewer. */
private XSLTViewer xsltViewer = null;

/** The node which holds the XML document to be transformed. */
private TextFileNode editorNode;

/**
* Create a XSLTNodeViewer object, based on a Context and a Node object,

* both of which we will get from the XSLTNodeViewerFactory.
*

* @param context the context of the editor buffer

* @param editorNode the node which holds the XML document
74

public XSLTNodeViewer (Context context, TextFileNode editorNode) {
super (context) ;
_editorNode = editorNode;

}

/**
* This title will show on the tab of the viewer.
74
public String getViewerTitle() { return TAB TITLE; }

/**
* This 1is a longer description of the viewer.
74
public String getViewerDescription() { return TAB DESC; }

/**
* Creates the UI component for the XSLT pane.
*
* @return the XSLTViewer to display on the XSLT pane
74
public JComponent createViewerComponent () {
if (XSLTViewerFactory.getTransformer () == null) ({
JOptionPane.showMessageDialog (Browser.getActiveBrowser (),
TRANSFORMER MISSING, TAB DESC, JOptionPane.ERROR_MESSAGE);
return null;
}
if (xsltViewer == null) {
xsltViewer = new XSLTViewer (_editorNode) ;
}
return xsltViewer;

}

/**
* Creates the UI component to display in the Structure Pane.
* Not yet implemented.

Appendices

Index

.pme, 79

AbstractDeploymentDescriptor

class, 259

getBytes, 259
getDefaultAccessor, 259
getEncoding, 259
getExtraLocation, 259
getFileAccessor, 260
getName, 260
getTimestamp, 260
setBytes, 260
setExtralocation, 260
setFileAccessor, 260
setName, 260
setTimestamp, 260
toString, 260

AbstractDescriptorConversion

class, 261
addErrorMessage, 262
addWarningMessage, 262
convert, 262
createInterfaceFrom-
Descriptors, 262
findDescriptor, 262
generate, 262
getBeanDataSource, 263
getBeanDataSourceName,
263
getDescriptorDocument, 263
getEjbNode, 263
getGenericDDName, 263
getJotMethods, 263
getProject, 263
getPropertyNamesToSurface,
263
getServer, 263
isEjbJarDirty, 264
isModuleDirty, 264
needToUpdate, 264
patchForAppServer, 264
setEjbJarDirty, 264
setModuleDirty, 264
updateEjbModule, 264
verifyDeployment-
Descriptors, 264

AbstractNodeViewer class

example, 295

AbstractRevisionNumber class,

203

compareTo, 203
doComparison, 203
getPrecedence, 203

getRevisionNumberInstance,

203
getRevisionString, 203
ACTION_Customizer field
BasicLayoutAssistant, 142
ACTION_MoveToFirst field
BasicLayoutAssistant, 142
ACTION_MoveToLast field
BasicLayoutAssistant, 142
ACTION_Serialize field
BasicLayoutAssistant, 142
ActionGroup class
example, 216
actions
for VCS, 200, 201, 211
actionVerify method
JBuilderInfo, 26
activate method
Designer, 111
example, 116
add method
CmtModel, 96
example, 120
addActionListener method
ColorPanel, 14
addAddition method
Diff, 21
addAssignment method
example, 187
JotCodeBlock, 171
addBlankLine method
example, 187
JotCommentable, 174
addBufferListener method
example, 125
addChange method
Diff, 21
addChangeListener method
ListPanel, 35
addClass method
example, 186
JotSourceFile, 160
addComment method
example, 187
JotCommentable, 175
addComponentSourceListener
method
CmtComponentSource, 85

297

addConstructor method
JotClassSource, 167
addDeletion method
Diff, 22
addDesignerListener method
DesignerManager, 107
addDesignerReleaseListener
method
DesignerManager, 107
addDoStatement method
JotCodeBlock, 171
addEntries method
PathSet, 44
addErrorMessage method
AbstractDescriptor-
Conversion, 262
addField method
example, 187
JotClassSource, 167
addForStatement method
JotCodeBlock, 171
addIfStatement method
example, 188
JotCodeBlock, 172
addImport method
example, 146, 185
JotSourceFile, 160
addInitBlock method
JotClassSource, 167
addInnerClass method
JotClassSource, 167
addInnerCLass method
JotCodeBlock, 172
addInterface method
example, 186
JotClassSource, 168
addJotFileListener method
JotSourceFile, 160
addListElement method
ListPanel, 35
addMessage method
example, 259
addMethod method
CmtComponentSource, 85
example, 187
JotClassSource, 168
addMethodCall method
JotCodeBlock, 172
addMethodDeclaration method
JotClassSource, 168
addModel method
CmtComponentSource, 85

298 Index

addMouseListenerToHeaderIn-
Table method
TableSorter, 63
addParameter method
example, 187
JotMethodSource, 170
addPersonallgnoreFiles method
VCSUtils, 205
addProjectLibrary method
ProjectPathSet, 50
addProperty method
CmtComponentSource, 86
addPropertyChangeListener
method
CmtSubcomponent, 88, 91
example, 122
addPropertyState method
CmtSubcomponent, 89
addReturnStatement method
example, 190
JotCodeBlock, 172
addSourceBridge method
ServerLauncher, 248
addStatement method
example, 188
JotCodeBlock, 172
addSubcomponent method
CmtComponentSource, 86
example, 120
addTeamlgnoreFiles method
VCSUtils, 206
addThrowSpecifier method
example, 188
JotMethodSource, 170
addTolgnoreList method
VCS, 199
addTraceCategory method
Debug, 16
addTryStatement method
example, 189
JotCodeBlock, 172
addUniquePath method
PathSet, 44
Server, 237
addUniquePaths method
PathSet, 44
addUniquePathsIfEnabled
method
PathSet, 44
addUserData method
JotClass, 163
JotMarker, 161
addVariableDeclaration method
example, 188
JotCodeBlock, 172
addVCS method
example, 214
VCSFactory, 199
addWarningMessage method
AbstractDescriptor-
Conversion, 262
addWhileStatement method

example, 189
JotCodeBlock, 172
addWizardPage method
example, 181
adjustPositionForNib method
DesignView, 136
example, 148
annotate method
Designer, 112
example, 116
antify method
AppServerTargeting, 255
appendHttpPort method
ServerLauncher, 248
application servers, 224
client libraries, 239
deployment descriptors, 255,
259, 260
features, 232
getting a server, 227
getting a service, 226
JDKs, 239
legacy server registration,
228
manager, 225
property pages, 270
server configuration
registration, 228
server JDK registration, 228
server registration, 229
server targeting registration,
229
servers, 236
service registration, 229, 245
service type icons, 231
service type registration, 229
service types, 230
services, 232
setup, 265, 267
setup registration, 266
AppServerTargeting class, 255
antify, 255
createAntJarTask, 256
createAntTmpJarTask, 256
getEjbJarProperties, 256
getEjbProperties, 256
getJarTarget, 256
getPageName, 256
getServer, 256
hasEjbJarProperties, 257
hasEjbProperties, 257
postProcessBuild, 257
preProcessBuild, 257
updateBuildTask, 257
updateDeployment-
Descriptors, 257
updateVerifyReport, 258
verifyDeployment-
Descriptors, 258
assureNibs method
DesignView, 136
example, 148

attemptDefaultConfiguration
method
Server, 237

Auralmage class, 5
createAuralmage, 6
dumpPixelMaps, 6
getAlphaThreshold, 6
getAuralmage, 6
getAuraRGB, 6
getBlendedImage, 6
getSourcelmage, 6
setAlphaThreshold, 6
setAuraRGB, 6

B

BasicLayoutAssistant class, 140
ACTION_Customizer, 142
ACTION_MoveToFirst, 142
ACTION_MoveToLast, 142
ACTION_Serialize, 142
calcBestZ, 140, 141, 142
example, 144

BasicWizard class
example, 180

BorderCornerLayoutAssistant
example, 142

browseClass method
PackageBrowserTree, 41

browsePackageOrClass method
PackageBrowserTree, 41

Browser class
example, 292

BrowserAction class
example, 98

Buffer class
example, 125

BUFFER _REVISION field
RevisionInfo, 203

bufferChanged method
example, 126

BufferListener interface
example, 124

BufferUpdater interface
example, 124

buildFeatureSet method
Service, 232

buttons
on a strip, 6

ButtonStrip class, 6
createButton, 7
createCancelButton, 7
createHelpButton, 7
createNoButton, 7
createOkButton, 7
createYesButton, 7
setOrientation, 7

C

calcBestZ method

BasicLayoutAssistant, 140,
141, 142
canAdd method
ListPanel, 35
cancelOperation method
CommitAction, 211
canConvertTolnteger method
Strings, 59
canDisplayNode method
example, 293
canEdit method
ListPanel, 35
canMoveDown method
ListPanel, 36
canMoveUp method
ListPanel, 36
canRemove method
ListPanel, 36
canStop method
ServerLauncher, 248
capitalize method
Strings, 59
CATEGORY field
Setup, 268
centerOnScreen method
DefaultDialog, 19
changeDirectoryReferencesIn-
String method
Server, 237
CHAR_ANY field
RegularExpression, 55
CHAR_ESCAPE field
RegularExpression, 55
CHAR_WILDCARD field
RegularExpression, 55
checkChildNodes method
Service.Type, 231
checkModel method
TableSorter, 63
checkProjectLocal method
VCSUtils, 206
checkReread method
CmtComponentSource, 86
JotPackages, 157
checkSetup method
Server, 237
checkShowRestartWarning
method
SetupManager, 265
CheckTree class, 7
CheckTreeNode class, 8
getExpandedIcon, 9
getlcon, 9
getText, 9
isAffectedByParentEnabled,
9
isCheckable, 9
isChecked, 9
isEnabled, 9
isEnablementAffectedBy-
Parent, 9
isLocked, 9

setAffectChildrenEnabled, 9
setAffectedByParent, 9
setChecked, 9
setEnabled, 9
setEnablementAffectedBy-
Parent, 10
setExpandedIcon, 10
setlcon, 10
setLocked, 10
setText, 10
toString, 10
CLASS_SCORPE field
CmtSubcomponent, 91
classes
selecting, 38, 41
Classes class, 10
findPathUrl, 10
getRootEntryFromClasspath,
11
getShortName, 11
pathContainsClass, 11
toPath, 11
classpath
contains, 11
find, 10
path sets, 43
cleanupRemovedComponent
method
LayoutAssistant, 132
clear method
Server, 237
clearExceptionQueue method
ServerLauncher, 249
clearProjectSettings method
Server, 237
clearSourceBridges method
ServerLauncher, 249
ClientJarService class, 232
clipCenter method
ClipPath, 11
clipMenultemPath method
ClipPath, 12
ClipPath class, 11
clipCenter, 11
clipMenultemPath, 12
ClipPathRenderer class, 12
close method
CmtModel, 96
Designer, 112
example, 117
Ziplndex, 68
closeDialog method
PackageBrowserDialog, 39
CMT, 79
component events, 85, 86, 87,
88
component factory
registration, 83
subcomponent events, 89, 91
CmtComponent interface, 83
getContainerDelegate, 83
getCustomizerClass, 83

Index 299

getDefaultEventIndex, 84
getDefaultPropertylndex, 84
getEvent, 84
getEvents, 84
getException, 84
getFile, 84
getlcon, 84
getLiveClazz, 84
getLiveType, 84
getManager, 84
getMethod, 84
getMethods, 84
getProperties, 84
getProperty, 84
getPropertyFromSetter, 84
getType, 84
isBean, 85
isContainer, 85
isHiddenState, 85
isReadOnly, 85
release, 85
CmtComponentListener
interface, 88
componentChanged, 88
eventChanged, 88
methodChanged, 88
propertyChanged, 88
subcomponentChanged, 88
CmtComponentManager class,
82
createComponent, 83
findEditor, 83
registerComponentFactory,
83
CmtComponents interface, 82
getComponent, 82
getPackages, 82
getProject, 82
release, 82
shutdown, 82
CmtComponentSource interface,
85
addComponentSource-
Listener, 85
addMethod, 85
addModel, 85
addProperty, 86
addSubcomponent, 86
checkReread, 86
commit, 86
example, 116, 120
fireComponentChanged, 86
fireSubcomponentChanged,
86
getlnitMethod, 86
getLastDesignedNode, 86
getModel, 86
getModels, 86
getModelTree, 87
getName, 87
getSourceFile, 87
getSubcomponent, 87

300 Index

getSubcomponents, 87
INIT METHOD NAME, 87
INIT METHOD PARAMS,

87
JBOWNER_METHOD _
NAME, 87

removeComponentSource-
Listener, 87
removeMethod, 87
removeModel, 87
removeProperty, 87
removeSubcomponent, 87
renameSubcomponent, 87
setLastDesignedNode, 87
VA INIT METHOD _
NAME, 87
CMTDump example, 97
CmtEvent interface, 93
CmtEventSource interface, 93
CmtEventState interface, 95
example, 99
getDefaultHandlerText, 95
CmtFeature interface, 92
getComponent, 92
getDisplayName, 92
getName, 92
getShortDescription, 92
isExpert, 92
isHidden, 92
CmtModel interface, 95
add, 96
close, 96
example, 119
getChildren, 96
getComponent, 96
getGraph, 96
getName, 96
getRoot, 96
isMultilnstance, 96
isSubcomponentOwned, 96
move, 96
remove, 97
CmtModelNode interface, 97
example, 116, 122
getModel, 97
getSubcomponent, 97
getTag, 97
isDesignable, 97
CmtProperty interface, 92
getEditor, 92
getReadMethod, 92
getType, 93
getWriteMethod, 93
isBound, 93
isConstrained, 93
isReadable, 93
isWritable, 93
CmtPropertySetting interface, 95
getMethodCall, 95
getProperty, 95
getSubcomponent, 95
getValue, 95

getValueSource, 95
setValueSource, 95

CmtPropertySource interface, 93

setName, 93
setReadable, 93
setType, 93
setWritable, 93

CmtPropertyState interface, 93

example, 99

getProperty, 94
getPropertySetting, 94
getSubcomponent, 94
getValue, 94
getValueSource, 94
getValueText, 94
isDefault, 94
isPseudoPropertyState, 94
isReadOnly, 94

reset, 94

setDefaultValue, 94
setValue, 94
setValueSource, 94
setValueText, 95
triggerPropertyChange, 95

CmtSubcomponent class

example, 98

CmtSubcomponent interface, 88

addPropertyChangeListener,
88,91
addPropertyState, 89
CLASS_SCOPE, 91
copy, 89
example, 116, 120
firePropertyChange, 89
getAsContainer, 89
getAssignment, 89
getComponent, 89
getComponentType, 89
getCustomizerDialog, 89
getDeclaredClass, 89
getDefaultEventState, 89
getDefaultPropertyState, 89
getEventState, 89
getEventStates, 89
getInitializer, 89
getlnitMethod, 90
getLiveClass, 90
getLivelnstance, 90
getMethodCalls, 90
getName, 90
getOuterComponent, 90
getPropertyState, 90
getPropertyStates, 90
getScope, 90
getSourceName, 90
isNeedsSerialize, 90
METHOD_SCOPE, 91
release, 90
releaseLivelnstance, 91
removePropertyChange-
Listener, 91
serialize, 91

setAssignment, 91
setCustomizerDialog, 91
setlnitializer, 91
setLiveClass, 91
setLivelnstance, 91
setNeedsSerialize, 91
setScope, 91

code
download, vi

code templates
todo, 191

ColorCombo class, 12
decodeColor, 13
decodeColors, 13
encodeColor, 13
encodeColors, 13
getCustomColors, 13
getPopupAlignment, 13
getPopupGridHeight, 13
getSelectedColor, 13
setCustomColors, 13
setPopupAlignment, 13
setPopupGridHeight, 13
setSelectedColor, 13

ColorPanel class, 14
addActionListener, 14
color constants, 15
fixedColors, 15
getActionCommand, 14
getCustomColors, 14
getSelectedColor, 14
removeActionListener, 14
setActionCommand, 14
setCustomColor, 14
setCustomColors, 15
setPanelGridHeight, 15
setSelectedColor, 15

colors
constants, 15
selecting, 12, 14

commit method
CmtComponentSource, 86
example, 121, 185
JotPackages, 157

CommitAction class, 211
cancelOperation, 211
getErrorMessages, 211
getPropertyPage, 211
isCancellable, 212
performAction, 212
setRunnerListener, 212
wasCommitSuccessfull, 212

compare method
TableSorter, 63

compareRowsByColumn
method
TableSorter, 63

compareTo method
AbstractRevisionNumber,

203

Component Modeling Tool. See

CMT

componentAbsLocation method
DesignView, 136
example, 147
componentChanged method
CmtComponentListener, 88
Compositelcon class, 15
findHit, 16
configureLauncher method
ServerLauncher, 249
Service, 232
configureServices method
ServerLauncher, 249
ConnectorService class, 232
constraintDialog field
DesignView, 137
constraintEditorSelection-
Changing method
LayoutAssistant, 132
contains method
ZipIndex, 69
convert method
AbstractDescriptor-
Conversion, 262
convertLineEndings method
Strings, 59
convertTolnteger method
Strings, 59
convertToPlatformLineEndings
method
Strings, 60
convertToUnixLineEndings
method
Strings, 60
copy method
CmtSubcomponent, 89
Streams, 58
createAntJarTask method
AppServerTargeting, 256
createAntTmpJarTask method
AppServerTargeting, 256
createAuralmage method
Auralmage, 6
createBackupAndOutputDirs
method
VCSUtils, 206
createButton method
ButtonStrip, 7
createCancelButton method
ButtonStrip, 7
createClientJar method
Server, 238
createClientLibrary method
Server, 238
createComponent method
CmtComponentManager, 83
createHelpButton method
ButtonStrip, 7
createlnterfaceFromDescriptors
method
AbstractDescriptor-
Conversion, 262

createLibrariesFromSetup
method
Server, 238
createLibrary method
Server, 238
createNoButton method
ButtonStrip, 7
createNodeViewer method
example, 293
createOkButton method
ButtonStrip, 7
createSetupPage method
Setup, 267
createSetupPanel method
NestingSetupPropertyPage,
271
SetupPage, 270
SetupPropertyPage, 270
createViewerComponent method
example, 295
createWizard method
example, 181
createY esButton method
ButtonStrip, 7
customizeArguments method
ServerLauncher, 249
customizeClassPath method
ServerLauncher, 249
customizeLibraries method
ServerLauncher, 249
customizeTransportAddress
method
ServerLauncher, 249
customize VmParameters method
ServerLauncher, 250

D

David Brouse, 212
bio, 212
Debug class, 16
addTraceCategory, 16
debugRect, 16
enableAssert, 16
enableOutput, 17
ensure, 17
flush, 17
print, 17
println, 17
printlnc, 17
printProfiler, 17
printStackTrace, 17
removeTraceCategory, 17
setLogStream, 17
startProfiler, 17
stopProfiler, 18
trace, 18
warn, 18
debugging, 16
debugRect method
Debug, 16

Index 301

decapitalize method
Strings, 60
decode method
Strings, 60
Strings.StringEncoding, 62
decodeArray method
Strings, 60
decodeColor method
ColorCombo, 13
decodeColors method
ColorCombo, 13
decodeKeyStroke method
KeyStrokeEditorPanel, 32
DEFAULT WEIGHT field
Server, 247
DefaultDialog class, 19
centerOnScreen, 19
doDefaultClick, 20
findFrame, 20
getBoundsAsString, 20
isAutoCenter, 20
setAutoCenter, 20
setBoundsAsString, 20
setCancelButton, 20
setDefaultButton, 20
setHelpButton, 20
show, 20
showModalDialog, 20
showSimpleModalDialog, 20
showSimpleNonModal-
Dialog, 20
delete method
PathSet, 44
deployLibraries method
ServerLauncher, 250
deployLibrary method
ServerLauncher, 250
deployLibraryEntry method
ServerLauncher, 250
deployment descriptors. See
application
servers:deployment
descriptors
DeploymentDescriptor class,
260
getDefaultAccessor, 261
getDeploymentDescriptors,
261
getFileEncoding, 261
getFullName, 261
DeployService class, 232
Designer interface, 111
activate, 111
annotate, 112
close, 112
example, 115
getModelName, 112
open, 112
Designer sample, 129
designerClosed method
DesignerListener, 108
designerClosing method

302 Index

DesignerListener, 108
DesignerEvent class, 109
dispatch, 110
getComponent, 110
getContext, 110
getDesigner, 110
getShow, 110
getToolName, 110
isReleaseEvent, 110
DesignerListener interface, 108
designerClosed, 108
designerClosing, 108
designerOpened, 108
designerOpening, 108
designerShow, 109
designerToolSelected, 109
DesignerManager class, 107
addDesignerListener, 107
addDesignerReleaseListener,
107
example, 115
getDesigner, 107
getDesignerViewers, 107
getlnstance, 107
lookupHelp, 107
registerDesigner, 107
removeDesignerListener, 108
removeDesignerRelease-
Listener, 108
designerOpened method
DesignerListener, 108
designerOpening method
DesignerListener, 108
designerReleased method
DesignerReleaseListener, 109
DesignerReleaseListener
interface, 108
designerReleased, 109
designerReleasing, 109
designerReleasing method
DesignerReleaseListener, 109
designers, 105
events, 107, 108, 109
for InternetBeans, 113
registration, 107
designerShow method
DesignerListener, 109
designerToolSelected method
DesignerListener, 109
DesignerViewer class
example, 98
DesignView class, 136
adjustPositionForNib, 136
assureNibs, 136
componentAbsLocation, 136
constraintDialog, 137
example, 147, 148
getDesignerView, 136
getModel, 136
getTempComponent, 136
isConstraintEditorShowing,
137

setModel, 137
dialogs
default, 19
validating, 21
DialogValidator interface, 21
validateDialog, 21
Diff class, 21
addAddition, 21
addChange, 21
addDeletion, 22
diff, 22
editScriptToDiff, 22
iterator, 22
reset, 22
reverselterator, 22
size, 23
toEditScript, 23
diff method
Diff, 22
DiffEntry class, 23
directories
backup, 50, 206
class path, 45
documentation, 45
output, 51, 206
project base, 51
relative to project, 207
source files, 45, 46, 50
testing, 51
working, 51
dispatch method
DesignerEvent, 110
JotFileEvent, 162
doComparison method
AbstractRevisionNumber,
203
doDefaultClick method
DefaultDialog, 20
doesProjectTreeNeedRefreshed
method
VCSUtils, 206
doubleClickElement method
ListPanel, 36
DummyPrintStream class, 23
dumpPixelMaps method
Auralmage, 6

E

editConstraints method
LayoutAssistant, 132
editElement method
ListPanel, 36
editor kits
example, 125
editScriptToDiff method
Diff, 22
editSelectedListElement method
ListPanel, 36
EJB. See application servers

EJBGRPFileNode class, 233,
239
EjbService class, 232
EMPTY_ARRAY field
PathSet, 48
Strings, 61
enableAssert method
Debug, 16
enableControls method
ListPanel, 36
enableDragDrop method
SearchTree, 57
enableOutput method
Debug, 17
encode method
Strings, 60
Strings.StringEncoding, 62
encodeArray method
Strings, 60
encodeColor method
ColorCombo, 13
encodeColors method
ColorCombo, 13
encodeKeyStroke method
KeyStrokeEditorPanel, 32
ensure method
Debug, 17
ensureNonNull Value method
Server, 238
ensureProjectContainsServer-
ClientLibrary method
Server, 238
ensureProjectContainsServer-
Library method
Server, 238
environment
JBuilder information, 26
platform information, 49
escapeParameter method
ServerLauncher, 250
eventChanged method
CmtComponentListener, 88
events
for color panel, 14
for components, 85, 86, 87,
88
for designers, 107, 108, 109
for JOT, 160, 162
for list panels, 35, 37
for subcomponents, 88, 89,
91
exactMatch method
RegularExpression, 53
examples
BorderCornerLayout-
Assistant, 142
CMTDump, 97
code download, vi
InternetBeansDesigner, 113
InternetBeansModel, 119
InternetBeansModelNode,
119

InternetBeansViewer, 124
JBossSetup24, 268
JSPTagWizard, 179
SourceSafeVCS, 212
UlSampler, 72
XMLValidator, 287
XSLTNodeViewer, 294
XSLTViewerFactory, 290

F

features. See application
servers:features
FILE REVISION field
RevisionInfo, 203
fileClassChanged method
JotFileListener, 162
fileImportChanged method
JotFileListener, 162
fileMiscChanged method
JotFileListener, 162
filePackageChanged method
JotFileListener, 162
files
differences, 21
findBrowser method
example, 181
findDescriptor method
AbstractDescriptor-
Conversion, 262
findEditor method
CmtComponentManager, 83
findFrame method
DefaultDialog, 20
findHit method
Compositelcon, 16
findPathUrl method
Classes, 10
findServerPathSet method
ServerManager, 226
findService method
ServerManager, 226
findSubstringMatch method
RegularExpression, 54
finish method
example, 182
fireComponentChanged method
CmtComponentSource, 86
firePropertyChange method
CmtSubcomponent, 89
fireSubcomponentChanged
method
CmtComponentSource, 86
fixConflictForEjbGrpXmlSource
method
VCSUtils, 206
fixConflictsForJavaSource
method
VCSUtils, 206
fixedColors field
ColorPanel, 15

flush method
Debug, 17
format method
Strings, 61
formatJarFileParameter method
Server, 239

G

generate method
AbstractDescriptor-
Conversion, 262
generating Java, 155
getActionCommand method
ColorPanel, 14
getActions method
VCSFileStatus, 204
getActiveVCS method
VCSUtils, 207
getActiveVCSName method
VCSUtils, 207
getAddButton method
ListPanel, 36
getAllAvailableFeatures method
Service, 232
getAllAvailableSpecFeatures
method
Service, 232
getAllChildren method
ZipIndex, 69
getAllowPackages method
PackageBrowserDialog, 39
getAlphaThreshold method
Auralmage, 6
getArchivesToDeployOnRun
method
ServerLauncher, 250
getArguments method
ServerLauncher, 250
getAsContainer method
CmtSubcomponent, 89
example, 147
getAssignment method
CmtSubcomponent, 89
example, 99
JotExpression, 176
getAssignments method
JotCodeBlock, 173
getAssociatedJdk method
Server, 239
getAssociatedModuleType
method
Service, 232
getAuralmage method
Auralmage, 6
Images, 25
getAuraRGB method
Auralmage, 6
getAuthor method
RevisionInfo, 202
getAutoProperty method

Index 303

example, 214
getAuxPath method
ProjectPathSet, 50
getAuxPaths method
ProjectPathSet, 50
getAvailableSpecFeaturesFor-
AssociatedModuleType
method
Service, 233
getAvailableTypes method
ServerManager, 226
getBackupUrl method
VCSUtils, 207
getBakPath method
ProjectPathSet, 50
getBeanDataSource method
AbstractDescriptor-
Conversion, 263
getBeanDataSourceName
method
AbstractDescriptor-
Conversion, 263
getBlankIcon method
Icons, 24
getBlendedImage method
Auralmage, 6
getBoundsAsString method
DefaultDialog, 20
getBrowser method
example, 182
SetupPropertyPage, 270
getBrowserActiveNode method
VCSUtils, 207
getBuffer method
example, 125
getBufferContent method
example, 127
getBuildNumber method
JBuilderInfo, 26
getBytes method
AbstractDeployment-
Descriptor, 259
getCatches method
example, 190
getChildren method
CmtModel, 96
example, 120
ZipIndex, 69
getClass method
JotFile, 159
JotPackages, 157
getClasses method
JotFile, 159
getClassPath method
PathSet, 44
Server, 239
getClazz method
JotFileEvent, 162
getClientJarService method
Server, 239
getClientLibraryClassPath
method

304 Index

Server, 239
getClientLibraryName method
Server, 239
getClientVmParameters method
Service, 233
getCmtModel method
example, 122, 123
getCodeBlock method
example, 187
JotMethodSource, 170
JotStatement, 177
getCollection method
PathSet, 44
getCommand method
ServerLauncher, 250
getComment method
JotCommentable, 175
RevisionInfo, 202
VCSFilelnfo, 204
getCommentText method
JotComment, 175
getCompanionNode method
Server, 239
Service, 233
getCompanyName method
JBuilderInfo, 26
getComparableLocation method
JotClassSource, 168
JotCodeBlock, 173
JotSourceFile, 160
getComponent method
CmtComponents, 82
CmtFeature, 92
CmtModel, 96
CmtSubcomponent, 89
DesignerEvent, 110
example, 120
getComponentSource method
example, 146
getComponentType method
CmtSubcomponent, 89
JotClass, 163
getCondition method
JotExpression, 176
getConstraints method
example, 146
getConstraints Type method
example, 145
LayoutAssistant, 132
getConstructor method
JotClass, 163
getConstructors method
JotClass, 164
getContainerDelegate method
CmtComponent, 83
getContent method
example, 125
getContents method
TextFile, 66
getContext method
DesignerEvent, 110
getCopy method

PathSet, 45
Server, 239
getCurrentWorkingDirectory
method
ServerLauncher, 250
getCustomColors method
ColorCombo, 13
ColorPanel, 14
getCustomConfigurationPage-
Factory method
Server, 239
getCustomizedRunDebugClass-
Path method
Service, 233
getCustomizerClass method
CmtComponent, 83
getCustomizerDialog method
CmtSubcomponent, 89
getDate method
RevisionInfo, 202
getDaysLeft method
JBuilderInfo, 27
getDeclaredClass method
CmtSubcomponent, 89
example, 99
getDeclaredConstructor method
JotClass, 164
getDeclaredConstructors method
JotClass, 164
getDeclaredField method
JotClass, 164
getDeclaredFields method
JotClass, 164
getDeclaredInnerClasses method
JotClass, 164
JotCodeBlock, 173
getDeclaredMethod method
JotClass, 164
getDeclaredMethods method
JotClass, 164
getDeclaredModifiers method
JotClassSource, 168
JotMethodSource, 171
getDeclaringClass method
JotMethod, 169
getDeclaringFile method
JotClassSource, 168
getDefaultAccessor method
AbstractDeployment-
Descriptor, 259
DeploymentDescriptor, 261
getDefaultArguments method
ServerLauncher, 250
getDefaultClassPath method
Server, 239
getDefaultEventIndex method
CmtComponent, 84
getDefaultEventState method
CmtSubcomponent, 89
example, 99
getDefaultHandlerText method
CmtEventState, 95

example, 99
getDefaultHomeDirectory
method
Server, 239
getDefaultName method
Server, 239
getDefaultNecessaryArguments
method
ServerLauncher, 250
getDefaultNecessaryVm-
Parameters method
ServerLauncher, 250
getDefaultPropertylndex method
CmtComponent, 84
getDefaultPropertyState method
CmtSubcomponent, 89
example, 99
getDefaultServerName method
Server, 239
getDefaultSourcePath method
ProjectPathSet, 50
getDefaultSupportedSpec-
Features method
Service, 233
getDefaultVersion method
Server, 239
getDefaultVmParameters
method
ServerLauncher, 250
getDefaultWorkingDirectory
method
ServerLauncher, 250
getDependencies method
Service, 233
getDeploymentDescriptors
method
DeploymentDescriptor, 261
getDeployService method
Server, 240
getDescription method
example, 216
JBuilderInfo, 27
NestingSetupPropertyPage,
271
SetupPage, 270
SetupPropertyPage, 270
VCS, 199
getDescriptorDocument method
AbstractDescriptor-
Conversion, 263
getDesigner method
DesignerEvent, 110
DesignerManager, 107
getDesignerView method
DesignView, 136
getDesigner Viewers method
DesignerManager, 107
getDirectory method
ZipIndexEntry, 71
getDisabledImage method
Images, 25
getDisablelcon method

Icons, 24
getDisplayName method
CmtFeature, 92
getDocPath method
PathSet, 45
getEditButton method
ListPanel, 36
getEditor method
CmtProperty, 92
getEjbJarProperties method
AppServerTargeting, 256
getEjbNode method
AbstractDescriptor-
Conversion, 263
getEjbProperties method
AppServerTargeting, 256
getEjbService method
Server, 240
getElementName method
ListPanel, 36
getElse method
example, 190
getEmptyDescription method
PathSet, 45
getEnabledServers method
ServerManager, 226
getEncoding method
AbstractDeployment-
Descriptor, 259
JotPackages, 157
getEndPosition method
JotMarker, 161
getEnvironment method
ServerLauncher, 251
getEnvpWithPathVariablePrefix
method
ServerLauncher, 251
getErrorMessages method
CommitAction, 211
getEvent method
CmtComponent, 84
getEvents method
CmtComponent, 84
getEventState method
CmtSubcomponent, 89
getEventStates method
CmtSubcomponent, 89
example, 99
getException method
CmtComponent, 84
getExcludedPaths method
VCSUtils, 207
getExistingZipFile method
ZipIndex, 69
getExpandedIcon method
CheckTreeNode, 9
getExpansionPackNames
method
JBuilderInfo, 27
getExpansionState method
SearchTree, 57
getExtraDescriptions method

JBuilderInfo, 27
getExtralocation method
AbstractDeployment-
Descriptor, 259
getExtraVisiBrokerTool-
Parameters method
Server, 240
getFarthestPath method
PackageBrowserTree, 42
SearchTree, 57
getFeatureDefinition method
Service.Type, 231
getFeatures method
Service, 233
getField method
JotClass, 165
getFields method
JotClass, 165
getFile method
CmtComponent, 84
JotClass, 165
JotFileEvent, 163
JotPackages, 158
VCSFilelnfo, 204
getFileAccessor method
AbstractDeployment-
Descriptor, 260
getFileEncoding method
DeploymentDescriptor, 261
getFileNameBasedOnProtocol
method
Server, 240
getFilenames method
ZipIndex, 69
getFileObject method
example, 215
getFiles method
JotPackages, 158
getFilesArray method
JotPackages, 158
getFilesNeededByVCS method
VCSUtils, 207
getFirstParameter method
JotMethod, 169
getFromBag method
ServerLauncher, 251
getFullClassName method
JotSourceFile, 160
getFullClassPath method
PathSet, 45
Server, 240
getFullDocPath method
PathSet, 45
getFullLibPath method
ProjectPathSet, 50
getFullLibraryClassPath method
Server, 240
getFullName method
DeploymentDescriptor, 261
JotType, 169
PathSet, 45
Server, 240

Index 305

getFullPath method
PackageBrowserTree, 42
getFullSourcePath method
PathSet, 45
getGenericDDName method
AbstractDescriptor-
Conversion, 263
getGraph method
CmtModel, 96
example, 120, 123
getHeadingSpace method
Text, 65
getHomeDirectory method
Server, 240
getlcon method
CheckTreeNode, 9
CmtComponent, 84
Icon.IconFactory, 25
Icons, 24
PathSet, 45
Service.Type, 231
getlconFactory method
Icons, 24
getlmage method
Images, 25, 26
getlmport method
JotFileEvent, 163
JotSourceFile, 160
getlmports method
JotSourceFile, 160
getIncludeTestPath method
ProjectPathSet, 50
getlncompleteDescription
method
PathSet, 45
Server, 240
getlndentColumn method
Text, 65
getIndentLevel method
JotSourceElement, 174
getlnitializer method
CmtSubcomponent, 89
example, 99
getlnitMethod method
CmtComponentSource, 86
CmtSubcomponent, 90
example, 99
getlnnerClasses method
JotClass, 165
getInstance method
DesignerManager, 107
getInterfaces method
JotClass, 165
getJarTarget method
AppServerTargeting, 256
getJavalnitializationString
method
KeyStrokeEditorPanel, 32
getJavaLauncher method
ServerLauncher, 251
get]DK method
ProjectPathSet, 50

306 Index

get]DKPathSet method
ProjectPathSet, 50
getJDKs method
ProjectPathSet, 50
getJdkSupportProvider method
Server, 240
getJotClass method
JotType, 169
getJotClassSource method
JotType, 169
getJotMethods method
AbstractDescriptor-
Conversion, 263
getJotPackages method
example, 185
getJspServletService method
Server, 240
getKeyName method
KeyStrokeEditorPanel, 32
getKeyStroke method
KeyStrokeDialog, 31
KeyStrokeEditorPanel, 32
KeyStrokeEditorTextField,
33
getKeyStrokeName method
KeyStrokeEditorPanel, 32
getKeyStrokeText method
KeyStrokeEditorPanel, 32
getKeyText method
KeyStrokeEditorPanel, 33
getLabel method
RevisionInfo, 202
ServerLauncher, 251
getLabels method
RevisionInfo, 202
getLastDesignedNode method
CmtComponentSource, 86
getLastModificationSaved
method
PathSet, 45
getLastModified method
PathSet, 45
Server, 240
ZipIndex, 69
ZipIndexEntry, 71
getLastRegisteredServer method
ServerManager, 226
getLayoutAssistant method
SelectNib, 138
getLegacyFullName method
Server, 240
getLength method
RegularExpression, 54
getLibKit method
PathSet, 45
getLibKits method
ProjectPathSet, 51
getLibPath method
ProjectPathSet, 51
getLibraries method
ProjectPathSet, 51
getLibrary method

ProjectPathSet, 51
getLibraryClassesRelativePath
method
ServerLauncher, 251
getLibraryDestination method
ServerLauncher, 251
getList method
ListPanel, 36
getListCellRendererComponent
method
ListPanel, 36
getListScrollPane method
ListPanel, 36
getLiveClass method
CmtSubcomponent, 90
example, 99
getLiveClazz method
CmtComponent, 84
example, 99
getLivelnstance method
CmtSubcomponent, 90
example, 116, 120, 123
getLiveType method
CmtComponent, 84
getLocalRevisions method
VCSUtils, 207
getManager method
CmtComponent, 84
getMergeConflictDividerMarker
method
VCS, 199
getMergeConflictEndMarker
method
VCS, 199
getMergeConflictStartMarker
method
VCS, 199
getMethod method
CmtComponent, 84
JotClass, 165
getMethodCall method
CmtPropertySetting, 95
example, 99
JotCodeBlock, 173
JotExpression, 176
getMethodCalls method
example, 99
getMethodCalls method
CmtSubcomponent, 90
JotCodeBlock, 173
getMethods method
CmtComponent, 84
JotClass, 165
getMode method
PackageBrowserTree, 42
getModel method
CmtComponentSource, 86
CmtModelNode, 97
DesignView, 136
getModelName method
Designer, 112
example, 117

getModels method
CmtComponentSource, 86
getModelTree method
CmtComponentSource, 87
getModifiers method
JotClass, 166
JotMethod, 169
getMoveDownButton method
ListPanel, 36
getMoveUpButton method
ListPanel, 36
getName method
AbstractDeployment-
Descriptor, 260
CmtComponentSource, 87
CmtFeature, 92
CmtModel, 96
CmtSubcomponent, 90
example, 100, 121, 216, 269
JotClass, 166
JotFile, 159
JotMethod, 169
JotType, 169
PathSet, 46
ProjectPathSet, 51
Server, 241
Service.Type, 231
Setup, 267
VCS, 199
VCSFilelnfo, 204
ZipIndexEntry, 71
getNameFromFullName method
Server, 241
getNames method
VCSFactory, 199
getNearestPath method
SearchTree, 57
getNecessaryArguments method
ServerLauncher, 251
getNecessaryVmParameters
method
ServerLauncher, 251
getNew method
JotExpression, 176
getNewPathsBasedOnNew-
HomeDirectory method
Server, 241
getNewProjectFromVCS-
WizardAction method
VCS, 199
getNibBounds method
SelectNib, 138
getNode method
example, 182, 293
getNodeValue method
Server, 241
getNoneServerltem method
ServerManager, 226
getNormalText method
JotComment, 175
getOpenZipIndexes method
ZipIndex, 69

getOperation method
JotExpression, 176
getOptimizerPackages method
Server, 241
getOuterComponent method
CmtSubcomponent, 90
example, 100
getOutPath method
ProjectPathSet, 51
getPackage method
JotFile, 159
JotPackages, 158
getPackageBrowserFilter
method
PackageBrowserTree, 42
getPackageManager method
JotFile, 159
getPackages method
CmtComponents, 82
JotPackages, 158
Server, 241
getPackagesArray method
JotPackages, 158
getPageComponent method
example, 183
getPageFactory method
Setup, 267
getPageName method
AppServerTargeting, 256
getParameter method
JotMethod, 169
getParameters method
JotMethod, 170
getParameterTypes method
JotMethod, 170
getParent method
JotSourceElement, 174
getPathNode method
PackageBrowserTree, 42
getPathNodes method
PackageBrowserTree, 42
getPathRelativeToProject-
Directory method
VCSUtils, 207
getPaths method
example, 181
getPathSet method
Server, 241
getPathSetReferenceClass
method
PathSet, 46
getPathTime method
ProjectPathSet, 51
getPersonalExcludedPaths
method
VCSUtils, 208
getPersonalities method
example, 181
Setup, 267
getPopupAlignment method
ColorCombo, 13
getPopupGridHeight method

ColorCombo, 13
getPrecedence method
AbstractRevisionNumber,
203
getPreserveMode method
SearchTree, 57
getPrimaryServer method
ServerManager, 227
getProject method
AbstractDescriptor-
Conversion, 263
CmtComponents, 82
PackageBrowserTree, 42
ServerLauncher, 251
SetupPropertyPage, 270
getProjectConfigPage method
example, 214
VCS, 199
getProjectConfigPageNew
method
VCS, 199
getProjectLibraries method
ProjectPathSet, 51
getProjectLibrariesForRun
method
ServerLauncher, 251
getProjectPath method
example, 219
getProjectPropertiesPage method
Service, 234
getProjectStatus method
example, 216
VCS, 200
getProperties method
CmtComponent, 84
PathSet, 46
getProperty method
CmtComponent, 84
CmtPropertySetting, 95
CmtPropertyState, 94
example, 99
PathSet, 46
getPropertyEditor method
example, 145
LayoutAssistant, 133
getPropertyFromSetter method
CmtComponent, 84
getPropertyKey method
Service.Type, 231
getPropertyMap method
ServerLauncher, 251
getPropertyNamesToSurface
method
AbstractDescriptor-
Conversion, 263
getPropertyPage method
CommitAction, 211
getPropertySetting method
CmtPropertyState, 94
example, 99
getPropertyState method
CmtSubcomponent, 90

Index 307

getPropertyStates method
CmtSubcomponent, 90
example, 99
getQueuedExceptions method
ServerLauncher, 251
getRawBuildNumber method
JBuilderInfo, 27
getRawLastModified method
ZipIndex, 69
ZipIndexEntry, 71
getReadMethod method
CmtProperty, 92
getRectangleDimension method
example, 147, 148
SelectNib, 138
getRectangleLocation method
example, 148
SelectNib, 138
getRefactorCheckoutAction
method
VCS, 200
getReferenceName method
PathSet, 46
getRelativePath method
VCSUtils, 208
getRemoveButton method
ListPanel, 36
getRequire method
PathSet, 46
getRequiredName method
PathSet, 46
getResolver method
PathSet, 46
getResourcePath method
ProjectPathSet, 51
getResult method
KeyStrokeEditorPanel, 33
getReturnType method
JotMethod, 170
getRevisionNumber method
RevisionInfo, 202
getRevisionNumberInstance
method
AbstractRevisionNumber,
203
getRevisions method
example, 217
VCS, 200
getRevisionString method
AbstractRevisionNumber,
203
getRoot method
CmtModel, 96
example, 120, 123
getRootEntryFromClasspath
method
Classes, 11
getRunConfigPropertyPage
method
Service, 234
getRunConfigPropertyPages
method

308 Index

ServerLauncher, 251
getScope method
CmtSubcomponent, 90
example, 100
getSelectedColor method
ColorCombo, 13
ColorPanel, 14
getSelectedIndex method
ListPanel, 36
getSelectedIndices method
ListPanel, 36
getSelectedListElement method
ListPanel, 37
getSelectedListElements method
ListPanel, 37
getSelectedNode method
PackageBrowserTree, 42
getSelectedNodes method
PackageBrowserTree, 42
getSelectedNodesInProjectPane
method
VCSUtils, 208
getSelectedPath method
PackageBrowserTree, 43
getSelectedPaths method
PackageBrowserTree, 43
getSelectionModel method
ListPanel, 37
getSelectionState method
SearchTree, 57
getServer method
AbstractDescriptor-
Conversion, 263
AppServerTargeting, 256
ServerLauncher, 252
ServerManager, 227
Service, 235
getServers method
ServerManager, 227
getServerTypeld method
Server, 241
getService method
ServerLauncher, 252
ServerManager, 227
Service, 235
getServices method
Server, 242
ServerLauncher, 252
ServerManager, 227
Service, 235
getServiceType method
ServerManager, 227
Service, 235
getServiceTypeKeys method
Service, 235
getServiceTypes method
ServerManager, 227
getSetup method
SetupManager, 265
getSetupLauncher method
Server, 242
getSetupPersonalities method

SetupManager, 265
getSetupPropertyPage method
example, 269
Setup, 267
getSetups method
SetupManager, 265
getShortDescription method
CmtFeature, 92
getShortName method
Classes, 11
Server, 242
getShortNameWithVersion
method
Server, 242
getShow method
DesignerEvent, 110
getShowEventType method
KeyStrokeEditorTextField,
34
getShowKeyReleased method
KeyStrokeEditorTextField,
34
getShowKeyTyped method
KeyStrokeEditorTextField,
34
getShutdownWaitTime method
ServerLauncher, 252
getSKU method
JBuilderInfo, 27
getSKUDescription method
JBuilderInfo, 27
getSKUName method
JBuilderInfo, 27
getSkuVersion method
Service.Type, 231
getSortedRowIndex method
TableSorter, 63
getSource method
example, 215
VCS, 200
getSourceBridge method
ServerLauncher, 252
getSourceBridges method
ServerLauncher, 252
getSourceFile method
CmtComponentSource, 87
example, 146, 185
JotPackages, 158
getSourcelmage method
Auralmage, 6
getSourceName method
CmtSubcomponent, 90
example, 100
getSourcePath method
example, 181
PathSet, 46
getSourceVersion method
JotPackages, 158
getStartPosition method
JotMarker, 161
getStatements method
JotCodeBlock, 173

JotMethodSource, 171
JotStatement, 177
getStatus method
VCSFilelnfo, 204
VCSFileStatus, 204
getStatusIcon method
VCSFileStatus, 204
getStopper method
ServerLauncher, 252
getStringPath method
SearchTree, 57
getSubcomponent method
CmtComponentSource, 87
CmtModelNode, 97
CmtPropertySetting, 95
CmtPropertyState, 94
example, 116, 121, 122, 123,
147
getSubcomponents method
CmtComponentSource, 87
example, 98, 116
getSubStrings method
Strings, 61
getSummaryText method
JotComment, 175
getSuperclass method
JotClass, 166
getTag method
CmtModelNode, 97
getTempComponent method
DesignView, 136
example, 148
getTestPath method
ProjectPathSet, 51
getText method
CheckTreeNode, 9
JotSourceElement, 174
getTexture method
TexturePanel, 67
getThen method
example, 188
getThrowSpecifiers method
JotMethod, 170
getTimestamp method
AbstractDeployment-
Descriptor, 260
JotFile, 159
getToolName method
DesignerEvent, 110
getTracker method
ServerLauncher, 252
getType method
CmtComponent, 84
CmtProperty, 93
JotClass, 166
JotComment, 175
getUniqueRunDebugClassPath
method
Server, 242
getUnsortedRowIndex method
TableSorter, 63
getUrl method

JotFile, 159
JotPackages, 158
PathSet, 46
Server, 242
VCSFilelnfo, 204
getUserData method
JotClass, 166
JotMarker, 161
getUserName method
JBuilderInfo, 27
getValue method
CmtPropertySetting, 95
CmtPropertyState, 94
example, 99
JotExpression, 176
getValueAt method
TableSorter, 63
getValues method
example, 292
getValueSource method
CmtPropertySetting, 95
CmtPropertyState, 94
example, 99, 146
getValueText method
CmtPropertyState, 94
example, 99, 146
KeyStrokeEditorPanel, 33
getVariable method
JotExpression, 176
getVariableDeclaration method
JotCodeBlock, 173
getVariableDeclarations method
JotCodeBlock, 173
getVCS method
VCSFactory, 199
getVCSContextMenuGroup
method
example, 217
VCS, 200
getVCSFileActions method
VCSFileStatus, 205
getVCSFileMenuGroup method
example, 216
VCS, 200
getVCSGlobalMenuGroup
method
VCS, 201
getVCSIcon method
example, 216
VCS, 201
getVCSProjectMenuGroup
method
example, 216
VCS, 201
getVersion method
Server, 242
getViewerDescription method
example, 295
getViewerTitle method
example, 295
getVKText method
KeyStrokeEditorPanel, 33

getVmParameters method
ServerLauncher, 252
getWaitForServerThread method
ServerLauncher, 252
getWeight method
Server, 242
getWorkingDirectory method
ProjectPathSet, 51
ServerLauncher, 252
getWorkingDirectoryFrom-
HomeDirectory method
ServerLauncher, 252
getWriteMethod method
CmtProperty, 93
getZipEntries method
ZipIndex, 70
getZipIndex method
ZipIndex, 69
getZipIndexEntry method
ZipIndex, 70

H

handleOldStyleProjects method
VCSUtils, 208
hasClientJarCreator method
Server, 242
hasEjbDeployer method
Server, 242
hasEjbJarProperties method
AppServerTargeting, 257
hasEjbProperties method
AppServerTargeting, 257
hasSetup method
Server, 242
help method
example, 183
HelpManager class
example, 183
hide method
SelectBoxes, 137
ZipIndex, 70
hideAll method
SelectBoxes, 137
ZipIndex, 70

I

IBM_LINUX field
Platform, 49
IBM_VENDOR field
Platform, 49
Icon.IconFactory class, 25
getlcon, 25
icons
adding auras, 5
composites, 15
disabled, 24
factory, 25
for check tree nodes, 9
for components, 84

Index 309

for path sets, 45
for service types, 231
for VCS, 201
for VCS status, 204
utilities, 24
Icons class, 24
getBlanklcon, 24
getDisabledlcon, 24
getlcon, 24
getlconFactory, 24
images
utilities, 25
Images class, 25
getAuralmage, 25
getDisabledImage, 25
getlmage, 25, 26
waitForlmage, 26
inlnstance method
JotClass, 166
init method
ServerLauncher, 252
INIT METHOD_ NAME field
CmtComponentSource, 87
INIT METHOD PARAMS
field
CmtComponentSource, 87
initialize method
Server, 242
initializeSetupPage method
Setup, 267
initLauncher method
ServerLauncher, 252
inMultilnstance method
CmtModel, 96
InternetBeans
designer, 113
InternetBeansDesigner example,
113
InternetBeansModel example,
119
InternetBeansModelNode
example, 119
InternetBeansViewer example,
124
INVALID SERVER field
Server, 247
invokeWizard method
example, 181
isAddToProjectEnabled method
PackageBrowserDialog, 39
isAddToProjectSelected method
PackageBrowserDialog, 39
isAddToProjectVisible method
PackageBrowserDialog, 39
isAffectedByParentEnabled
method
CheckTreeNode, 9
isArray method
JotClass, 166
isAssignableFrom method
JotClass, 166
isAutoCenter method

310 Index

DefaultDialog, 20
isBeaEnabled method
JBuilderInfo, 28
isBean method
CmtComponent, 85
isBinary method
example, 216
VCS, 201
isBinaryFileNode method
VCSUtils, 208
isBound method
CmtProperty, 93
isBreakOnNewLine method
RegularExpression, 54
isCancellable method
CommitAction, 212
isCaseSensitive method
RegularExpression, 54
isCheckable method
CheckTreeNode, 9
isChecked method
CheckTreeNode, 9
isClassComboVisible method
PackageBrowserDialog, 39
isClassNameInTree method
PackageBrowserTree, 43
isCommentRequired method
VCSFileStatus, 205
isComponentEnabled method
JBuilderInfo, 28
isConfigureVCSMenuEnabled
method
example, 217
VCS, 201
isConstant method
JotExpression, 176
isConstrained method
CmtProperty, 93
isConstraintEditorShowing
method
DesignView, 137
isContainer method
CmtComponent, 85
isCopy method
Server, 243
isDefault method
CmtPropertyState, 94
example, 99
isDefaultEnabled method
Service.Type, 231
isDesignable method
CmtModelNode, 97
example, 123
isDirectory method
ZipIndex, 70
ZipIndexEntry, 72
isEjbJarDirty method
AbstractDescriptor-
Conversion, 264
isEmpty method
PathSet, 46
Strings, 61

isEnabled method
CheckTreeNode, 9
example, 269
PathSet, 46
Setup, 268
isEnabledForSku method
Service.Type, 231
isEnablementAffectedByParent
method
CheckTreeNode, 9
isEntEnabled method
JBuilderInfo, 28
isEnterpriseEnabled method
JBuilderInfo, 28
isExpert method
CmtFeature, 92
isFileType method
VCSUtils, 208
isFoundationOnlyEnabled
method
JBuilderInfo, 28
isGenericPremiumEnabled
method
JBuilderInfo, 28
isGenericValueEnabled method
JBuilderInfo, 28
isGranula method
Service, 235
isGranular method
Server, 243
isHidden method
CmtFeature, 92
ZipIndex, 70
isHiddenState method
CmtComponent, 85
isIncomplete method
PathSet, 47
Server, 243
isInitiallySetup method
Server, 243
isInProjectDirectory method
VCSUtils, 208
isInterface method
JotClass, 166
isLibraryEnabled method
JBuilderInfo, 28
isLicensed method
JBuilderInfo, 28
isLocked method
CheckTreeNode, 9
isMacLAF method
Platform, 49
isModified method
JotSourceElement, 174
SetupPropertyPage, 270
isModifiedlnVCS method
VCSFileStatus, 205
isModifiedLocally method
VCSFileStatus, 205
isModuleDirty method
AbstractDescriptor-
Conversion, 264

isMultilnstance method
example, 120
isNeedsSerialize method
CmtSubcomponent, 90
isNew method
VCSFileStatus, 205
isNull method
JotExpression, 176
isOpen method
ZipIndex, 70
isPackageName method
PackageBrowserTree, 43
isPageValid method
Server, 243
isPatternMatch method
RegularExpression, 54
isPrimitive method
JotClass, 166
isProEnabled method
JBuilderInfo, 28
isPseudoPropertyState method
CmtPropertyState, 94
example, 99
isReadable method
CmtProperty, 93
isReadOnly method
CmtComponent, 85
CmtPropertyState, 94
JotSourceFile, 161
PathSet, 47
isRegExpMatch method
RegularExpression, 54
isReleaseEvent method
DesignerEvent, 110
isRuntime method
Service.Type, 232
isSeEnabled method
JBuilderInfo, 28
isSelectable method
SelectNib, 138
isSelectVCSMenuEnabled
method
VCS, 201
isServerEnabled method
Server, 243
isSetup method
Server, 243
isSetupCompleted method
Server, 243
isShowDescription method
Setup, 268
isShowReopenWarning method
SetupManager, 266
isShowRestartWarning method
SetupManager, 266
isSpecialChar method
RegularExpression, 54
isSpecialDown method
Platform, 49
isStudio method
JBuilderInfo, 29
isSubcomponentOwned method

CmtModel, 96
example, 120
isSybaseEnabled method
JBuilderInfo, 29
isTermLicense method
JBuilderInfo, 29
isTrial method
JBuilderInfo, 29
isUnderVCS method
example, 214
RevisionInfo, 202
VCS, 201
isValidSetupDirectory method
Server, 243
isValidWorkingDirectory
method
ServerLauncher, 253
isVCSFileOrDir method
VCSUtils, 208
isVisible method
SelectBoxes, 137
isWorkingRevision method
RevisionInfo, 202
isWritable method
CmtProperty, 93
iterator method
Diff, 22

J

JAR files. See Zip files
JarFileNode class, 233, 239
Java
generating, 155
parsing, 155
Java Object Toolkit. See JOT
JavaBeans, 79
customizers, 83
icons, 84
jbInit method, 79
JBoss
JBuilder integration, 225
JBossSetup24 example, 268
JBOWNER_METHOD NAME
field
CmtComponentSource, 87
JBuilderInfo class, 26
actionVerify, 26
getBuildNumber, 26
getCompanyName, 26
getDaysLeft, 27
getDescription, 27
getExpansionPackNames, 27
getExtraDescriptions, 27
getRawBuildNumber, 27
getSKU, 27
getSKUDescription, 27
getSKUName, 27
getUserName, 27
isBeaEnabled, 28
isComponentEnabled, 28

isEntEnabled, 28
isEnterpriseEnabled, 28
isFoundationOnlyEnabled, 28
isGenericPremiumEnabled,
28
isGenericValueEnabled, 28
isLibraryEnabled, 28
isLicensed, 28
isProEnabled, 28
isSeEnabled, 28
isStudio, 29
isSybaseEnabled, 29
isTermLicense, 29
isTrial, 29
launchWizard, 29
setStatusMsg, 29
showInfoDialog, 29
JDataStoreService class, 232
JDKPathSet class, 48
retrieving, 50
JOT, 79, 155
adding a class, 160
blank lines, 174
class diagram, 156
class modifiers, 166, 168
classes, 163, 167
comments, 174, 175
constructors, 163, 164, 167,
168
creating objects, 167
deleting a, 161
events, 160, 161, 162
example, 179
expressions, 176
fields, 164, 165, 167, 168
generating classes, 167
get Url, 159
import statement, 160, 161
inner classes, 164, 165, 167,
168, 172, 173
interfaces, 165, 166, 168
locations, 160, 161
methods, 164, 165, 168, 169,
170, 172
open a file, 158
package statement, 161
parsing classes, 163
save changes, 157
starting point, 157
statements, 170, 171, 173,
177
static initializers, 167, 168
super, 166
superclass, 169
tidy up, 158
types, 169
variables, 173
JotAnonymousClass interface,
167
JotAssignment interface, 176
JotBinaryExpression interface,
176

Index 311

JotBreak interface, 177
JotCase interface, 177
JotCatch interface, 177
JotClass interface, 163
addUserData, 163
getComponentType, 163
getConstructor, 163
getConstructors, 164
getDeclaredConstructor, 164
getDeclaredConstructors, 164
getDeclaredField, 164
getDeclaredFields, 164
getDeclaredInnerClasses, 164
getDeclaredMethod, 164
getDeclaredMethods, 164
getField, 165
getFields, 165
getFile, 165
getlnnerClasses, 165
getInterfaces, 165
getMethod, 165
getMethods, 165
getModifiers, 166
getName, 166
getSuperclass, 166
getType, 166
getUserData, 166
isArray, 166
isAssignableFrom, 166
isInstance, 166
isInterface, 166
isPrimitive, 166
newlInstance, 167
JotClassSource interface, 167
addConstructor, 167
addField, 167
addInitBlock, 167
addInnerClass, 167
addInterface, 168
addMethod, 168
addMethodDeclaration, 168
example, 186
getComparableLocation, 168
getDeclaredModifiers, 168
getDeclaringFile, 168
removeConstructor, 168
removeField, 168
removelnitBlock, 168
removelnnerClass, 168
removelnterface, 168
removeMethod, 168
setModifiers, 168
setName, 168
setSuperclass, 169
JotCodeBlock interface, 171,
177
addAssignment, 171
addDoStatement, 171
addForStatement, 171
addIfStatement, 172
addInnerClass, 172
addMethodCall, 172

312 Index

addReturnStatement, 172
addStatement, 172
addTryStatement, 172
addVariableDeclaration, 172
addWhileStatement, 172
getAssignments, 173
getComparableLocation, 173
getDeclaredInnerClasses, 173
getMethodCall, 173
getMethodCalls, 173
getStatements, 173
getVariableDeclaration, 173
getVariableDeclarations, 173
removeAssignment, 173
removelnnerClass, 173
removeMethodCall, 173
removeStatement, 173
removeVariableDeclaration,
173
JotComment interface, 175
example, 187
getCommentText, 175
getNormalText, 175
getSummaryText, 175
getType, 175
JotCommentable interface, 174
addBlankLine, 174
addComment, 175
getComment, 175
removeComment, 175
JotCondition interface, 176
JotConstructor interface, 170
JotConstructorSource interface,
171
JotContinue interface, 177
JotDefault interface, 177
JotDo interface, 177
JotExpression interface, 176
getAssignment, 176
getCondition, 176
getMethodCall, 176
getNew, 176
getOperation, 176
getValue, 176
getVariable, 176
isConstant, 176
isNull, 176
JotExpressionStatement
interface, 178
JotFieldDeclaration interface,
178
example, 187
JotFile interface, 159
getClass, 159
getClasses, 159
getName, 159
getPackage, 159
getPackageManager, 159
getTimestamp, 159
getUrl, 159
JotFileEvent class, 162
dispatch, 162

getClazz, 162
getFile, 163
getlmport, 163
JotFileListener interface, 162
fileClassChanged, 162
fileImportChanged, 162
fileMiscChanged, 162
filePackageChanged, 162
JotFinally interface, 178
JotFor interface, 178
Jotlf interface, 178
example, 188
JotInitBlock interface, 174, 178
JotInitializer interface, 176
JotInnerClass interface, 167
JotLabelled interface, 178
JotMarker interface, 161
addUserData, 161
getEndPosition, 161
getStartPosition, 161
getUserData, 161
JotMethod interface, 169
getDeclaringClass, 169
getFirstParameter, 169
getModifiers, 169
getName, 169
getParameter, 169
getParameters, 170
getParameterTypes, 170
getReturnType, 170
getThrowSpecifiers, 170
JotMethodCall interface, 176
JotMethodSource interface, 170
addParameter, 170
addThrowSpecifier, 170
example, 187
getCodeBlock, 170
getDeclaredModifiers, 171
getStatements, 171
removeParameter, 171
removeThrowSpecifier, 171
setModifiers, 171
setName, 171
setParameterText, 171
setReturnType, 171
JotNew interface, 176
JotPackages interface, 157
checkReread, 157
commit, 157
example, 185
file types, 159
getClass, 157
getEncoding, 157
getFile, 158
getFiles, 158
getFilesArray, 158
getPackage, 158
getPackages, 158
getPackagesArray, 158
getSourceFile, 158
getSourceVersion, 158
getUrl, 158

loadClass, 158
release, 158
releaseAll, 159
shutdown, 159
JotReturn interface, 178
JotSourceElement interface, 174
getIndentLevel, 174
getParent, 174
getText, 174
isModified, 174
setModified, 174
setText, 174
JotSourceFile interface, 159
addClass, 160
addImport, 160
addJotFileListener, 160
example, 185
getComparableLocation, 160
getFullClassName, 160
getlmport, 160
getlmports, 160
isReadOnly, 161
out, 161
removeClass, 161
removelmport, 161
removelJotFileListener, 161
reRead, 161
setPackage, 161
setTimestamp, 161
JotStatement interface, 177
getCodeBlock, 177
getStatements, 177
JotSubscript interface, 176
JotSwitch interface, 178
JotSynchronized interface, 178
JotThrow interface, 178
JotTry interface, 178
example, 189
JotType interface, 169
getFullName, 169
getJotClass, 169
getJotClassSource, 169
getName, 169
setName, 169
JotTypeop interface, 177
JotUnaryExpression interface,
177
JotVariableDeclaration interface,
178
example, 188
JotWhile interface, 178
example, 189
JSortedTable class, 64
JSP, 113, 179
JspServletService class, 232
JSPTagWizard example, 179

K

KeyStrokeDialog class, 30
getKeyStroke, 31

setDisplayOptions, 31
setKeyStroke, 31
KeyStrokeEditorPanel class, 31
decodeKeyStroke, 32
encodeKeyStroke, 32
getJavalnitializationString,
32
getKeyName, 32
getKeyStroke, 32
getKeyStrokeName, 32
getKeyStrokeText, 32
getKeyText, 33
getResult, 33
getValueText, 33
getVKText, 33
resetFocus, 33
setDisplayOptions, 33
setKeyStroke, 33
stopEditing, 33
KeyStrokeEditorTextField class,
33
getKeyStroke, 33
getShowEventType, 34
getShowKeyReleased, 34
getShowKeyTyped, 34
setDisplayOptions, 34
setKeyStroke, 34
setShowEventType, 34
setShowKeyReleased, 34
setShowKeyTyped, 34
keystrokes
selecting, 30, 31, 33

L

LAST SELECTED SETUP
NAME field
Setup, 268

lastColumnSorted method
TableSorter, 63

lastSortAscending method
TableSorter, 63

launchWizard method
JBuilderInfo, 29

layout assistants
registration, 131
resizing nibs, 139

layout managers, 130

LayoutAssistant interface, 131
cleanupRemovedComponent,

132
constraintEditorSelection-
Changing, 132

editConstraints, 132
example, 144
getConstraints Type, 132
getPropertyEditor, 133
layoutChanged, 133
prepareActionGroup, 133
prepareAddComponent, 133
prepareAddStatus, 133

prepareChangeLayout, 134
prepareCloneComponent,
134
prepareCloneStatus, 134
prepareMouseMoveStatus,
134
prepareMoveComponent, 135
prepareMoveStatus, 135
prepareResizeComponent,
135
prepareResizeStatus, 135
prepareSelectComponent,
135
resizeAction, 136
LayoutAssistant sample, 151
layoutChanged method
LayoutAssistant, 133
length method
ZipIndex, 70
libraryExists method
Server, 244
LINUX field
Platform, 49
ListPanel class, 34
addChangeListener, 35
addListElement, 35
canAdd, 35
canEdit, 35
canMoveDown, 36
canMoveUp, 36
canRemove, 36
doubleClickElement, 36
editElement, 36
editSelectedListElement, 36
enableControls, 36
getAddButton, 36
getEditButton, 36
getElementName, 36
getList, 36
getListCellRenderer-
Component, 36
getListScrollPane, 36
getMoveDownButton, 36
getMoveUpButton, 36
getRemoveButton, 36
getSelectedIndex, 36
getSelectedIndices, 36
getSelectedListElement, 37
getSelectedListElements, 37
getSelectionModel, 37
moveSelectedListElement, 37
promptForElement, 37
removeChangeListener, 37
removeSelectedListElements,
37
selectValue, 37
setAddButtonVisible, 37
setEditButtonVisible, 37
setEnabled, 37
setList, 37
setMoveButtonsVisible, 37
lists

Index 313

selecting, 34
loadClass method

JotPackages, 158
lookupHelp method

DesignerManager, 107
Itrim method

Strings, 61

M

MAC field
Platform, 49
makeFullName method
Server, 244
makelntoArray method
Text, 65
makeLocalBackup method
VCSUtils, 209
makeServerLibraryName
method
Server, 244
makeServerToolName method
Server, 244
Marcus Redeker, 225
bio, 225
MessageService class, 232
MessageView class
example, 259
METHOD_SCORPE field
CmtSubcomponent, 91
methodChanged method
CmtComponentListener, 88
ModelNode class
example, 145
modifyProjectLibraryList
method
Server, 244
move method
CmtModel, 96
example, 121
moveSelectedListElement
method
ListPanel, 37

N

n2sort method
TableSorter, 64
NamingService class, 232
needToUpdate method
AbstractDescriptor-
Conversion, 264
NestingSetupPropertyPage class,
270
createSetupPanel, 271
getDescription, 271
NEW_SERVER WEIGHT field
Server, 247
newlnstance method
JotClass, 167
newLauncher method

314 Index

Server, 244
NO_DEPENDENCIES field
Service, 236
NO_FEATURES field
Service, 236
NO_MATCH field
RegularExpression, 55
NO_NAME field
Server, 248
nodes
binary files, 208
getting selected nodes, 208
NodeViewerFactory interface
example, 292
NONE NAME field
ServerManager, 230
notifyProjectTreeHasBeen-
Refreshed method
VCSUtils, 209
notifyVCSSelected method
VCS, 201

0]

open method
Designer, 112
example, 117
ZipIndex, 70
OpenTools-Designer, 131
example, 129, 150
OpenTools-ServerServices, 230
OpenTools-Ul
example, 222
OpenTools-Wizard
example, 191
OS_NAME field
Platform, 49
out method
JotSourceFile, 161

P

PackageBrowserDialog class, 38
closeDialog, 39
getAllowPackages, 39
isAddToProjectEnabled, 39
isAddToProjectSelected, 39
isAddToProjectVisible, 39
isClassComboVisible, 39
setAddToProjectEnabled, 39
setAddToProjectSelected, 39
setAddToProjectVisible, 39
setAllowPackages, 39
setClassComboVisible, 39
showClassBrowserDialog, 40
showHelp, 40
showPackageBrowserDialog,

40

PackageBrowserFilter interface,
40
packageFilter, 40

PackageBrowserTree class, 41
browseClass, 41
browsePackageOrClass, 41
getFarthestPath, 42
getFullPath, 42
getMode, 42
getPackageBrowserFilter, 42
getPathNode, 42
getPathNodes, 42
getProject, 42
getSelectedNode, 42
getSelectedNodes, 42
getSelectedPath, 43
getSelectedPaths, 43
isClassNameInTree, 43
isPackageName, 43
setMode, 43
setPackageBrowserFilter, 43
setProject, 43
setSelectedPath, 43

packageFilter method
PackageBrowserFilter, 40

packages
for a project, 158
selecting, 38, 41

PackageTree sample, 193

parentLocation field
SelectNib, 138

parsing Java, 155

patchForAppServer method
AbstractDescriptor-

Conversion, 264
pathContainsClass method
Classes, 11
pathFromString method
PathSet, 47
pathFromStringArray method
PathSet, 47

paths, 43

PathSet class, 43
addEntries, 44
addUniquePath, 44
addUniquePaths, 44
addUniquePathsIfEnabled, 44
delete, 44
EMPTY_ARRAY, 48
getClassPath, 44
getCollection, 44
getCopy, 45
getDocPath, 45
getEmptyDescription, 45
getFullClassPath, 45
getFullDocPath, 45
getFullName, 45
getFullSourcePath, 45
getlcon, 45
getlncompleteDescription, 45
getLastModificationSaved,

45
getLastModified, 45
getLibKit, 45
getName, 46

getPathSetReferenceClass, 46
getProperties, 46
getProperty, 46
getReferenceName, 46
getRequired, 46
getRequiredNames, 46
getResolver, 46
getSourcePath, 46
getUrl, 46
isEmpty, 46
isEnabled, 46
isIncomplete, 47
isReadOnly, 47
pathFromString, 47
pathFromStringArray, 47
pathToString, 47
pathToStringArray, 47
resetFullPaths, 47
save, 47
setClassPath, 47
setCollection, 48
setDocPath, 48
setFromCopy, 48
setLibKit, 48
setName, 48
setProperty, 48
setRequired, 48
setSourcePath, 48
setUrl, 48
pathToString method
PathSet, 47
pathToStringArray method
PathSet, 47
pattern matching, 53
performAction method
CommitAction, 212
Platform class, 49
IBM_LINUX, 49
IBM_VENDOR, 49
isMacLAF, 49
isSpecialDown, 49
LINUX, 49
MAC, 49
OS_NAME, 49
SOLARIS, 49
STANDALONE _
DDEDITOR, 49
UNIX, 49
WIN32, 49
postProcessBuild method
AppServerTargeting, 257
postStart method
ServerLauncher, 253
Service, 235
postStop method
ServerLauncher, 253
Service, 235
prefixMatch method
RegularExpression, 54
prepareActionGroup method
example, 145
LayoutAssistant, 133

prepareAddComponent method
example, 145
LayoutAssistant, 133

prepareAddStatus method
example, 146
LayoutAssistant, 133

prepareChangeLayout method
example, 146
LayoutAssistant, 134

prepareCloneComponent method

LayoutAssistant, 134
prepareCloneStatus method
LayoutAssistant, 134
prepareMouseMoveStatus

method
example, 146
LayoutAssistant, 134

prepareMoveComponent method

LayoutAssistant, 135
prepareMoveStatus method
example, 147
LayoutAssistant, 135
prepareResizeComponent
method
example, 147
LayoutAssistant, 135
prepareResizeStatus method
example, 147
LayoutAssistant, 135
prepareSelectComponent
method
example, 148
LayoutAssistant, 135
preProcessBuild method
AppServerTargeting, 257
preServiceSelectionChanged-
AndSaved method
Server, 244
preStart method
ServerLauncher, 253
Service, 235
preStartServices method
ServerLauncher, 253
preStop method
ServerLauncher, 253
Service, 235
print method
Debug, 17
println method
Debug, 17
printlnc method
Debug, 17
printProfiler method
Debug, 17
printStackTrace method
Debug, 17
Project Pane
refreshing, 206, 209
ProjectPathSet class, 49
addProjectLibrary, 50
getAuxPath, 50
getAuxPaths, 50

getBakPath, 50
getDefaultSourcePath, 50
getFullLibPath, 50
getIncludeTestPath, 50
get]DK, 50
get]DKPathSet, 50
get]DKs, 50
getLibKits, 51
getLibPath, 51
getLibraries, 51
getLibrary, 51
getName, 51
getOutPath, 51
getPathTime, 51
getProjectLibraries, 51
getResourcePath, 51
getTestPath, 51
getWorkingDirectory, 51
putClassOnFullPath, 52
reloadLibraries, 52
setAuxPath, 52
setBakPath, 52
setDefaultSourcePath, 52
setFullLibPath, 52
setlncludeTestPath, 52
setIDKPathSet, 52
set]DKs, 52
setLibPath, 52
setLibraries, 53
setOutPath, 53
setTestPath, 53
setWorkingDirectory, 53
projects
find packages, 158
projectUsesServic method
Service, 235
promptForElement method
ListPanel, 37
property editors, 83
property pages
for application servers, 270
for VCS, 199
for VCS commit, 211
propertyChanged method
CmtComponentListener, 88
putClassOnFullPath method
ProjectPathSet, 52
putlnBag method
ServerLauncher, 253

Q

queueException method
ServerLauncher, 253

R

read method
Streams, 58
ZipIndex, 70, 71

readChars method

Index 315

Streams, 59
ReadingSource sample, 193
reallocateIndexes method

TableSorter, 64
redoLastColumnSort method

TableSorter, 64
refreshHistoryPane method

VCSUtils, 209
registerAssistant method

example, 144

UlDesigner, 131
registerComponentFactory

method

CmtComponentManager, 83
registerCustomConfiguration-

PageFactory method

ServerManager, 228
registerDesigner method

DesignerManager, 107

example, 115
registerFileOrDirNeededByVCS

method

VCSUtils, 209
registerJdkSupportProvider

method

ServerManager, 228
registerLegacyName method

ServerManager, 228
registerNodeViewerFactory

method

example, 292
registerServer method

ServerManager, 229
registerService method

ServerManager, 229
registerServices method

Server, 245
registerServiceType method

ServerManager, 229
registerSetup method

example, 269

SetupManager, 266
registerSourceClass method

VCSUtils, 209
registerTargeting method

ServerManager, 229
registration

for application servers, 229

for component factories, 83

for designers, 107

for layout assistants, 131

for legacy servers, 228

for server configuration, 228

for server JDKs, 228

for server service types, 229

for server services, 229, 245

for server setups, 266

for server targeting, 229

for VCS, 199

for VCS required files, 209

for VCS source classes, 209
RegularExpression class, 53

316 Index

CHAR_ANY, 55
CHAR_ESCAPE, 55
CHAR_WILDCARD, 55
exactMatch, 53
findSubstringMatch, 54
getLength, 54
isBreakOnNewLine, 54
isCaseSensitive, 54
isPatternMatch, 54
isRegExpMatch, 54
isSpecialChar, 54
NO_MATCH, 55
prefixMatch, 54
setBreakOnNewLine, 55
setPatternMatch, 55
setRegExpMatch, 55
substringMatch, 55
RegularExpression.MatchResult
class, 55
release method
CmtComponent, 85
CmtComponents, 82
CmtSubcomponent, 90
example, 186
JotPackages, 158
releaseAll method
JotPackages, 159
releaseLivelnstanc method
CmtSubcomponent, 91
reloadLibraries method
ProjectPathSet, 52
remove method
CmtModel, 97
example, 121
removeActionListener method
ColorPanel, 14
remove AllWhitespaceFrom
method
Text, 65
removeAssignment method
JotCodeBlock, 173
removeBufferListener method
example, 125
removeChangeListener method
ListPanel, 37
removeClass method
JotSourceFile, 161
removeComment method
JotCommentable, 175
removeComponentSource-
Listener method
CmtComponentSource, 87
removeConstructor method
JotClassSource, 168
removeDesignerListener method
DesignerManager, 108
removeDesignerReleaseListener
method
DesignerManager, 108
removeField method
JotClassSource, 168
removeFile method

VCSUtils, 210
removeFromIgnoreList method
VCS, 201
removelgnoreTeamFiles method
VCSUtils, 210
removelmport method
JotSourceFile, 161
removelnitBlock method
JotClassSource, 168
removelnnerClass method
JotClassSource, 168
JotCodeBlock, 173
removelnterface method
JotClassSource, 168
removelJotFileListener method
JotSourceFile, 161
removeMethod method
CmtComponentSource, 87
JotClassSource, 168
removeMethodCall method
JotCodeBlock, 173
removeModel method
CmtComponentSource, 87
removeParameter method
JotMethodSource, 171
removePersonallgnoreFiles
method
VCSUtils, 210
removeProperty method
CmtComponentSource, 87
removePropertyChangeListener
method
CmtSubcomponent, 91
removeSelectedListElements
method
ListPanel, 37
removeStatement method
JotCodeBlock, 173
removeSubcomponent method
CmtComponentSource, 87
example, 121
remove ThrowSpecifier method
JotMethodSource, 171
removeTraceCategory method
Debug, 17
removeTrailingBlankLines
method
Text, 65
removeVariableDeclaration
method
JotCodeBlock, 173
renameSubcomponent method
CmtComponentSource, 87
replaceTabs method
Text, 66
reRead method
JotSourceFile, 161
reset method
CmtPropertyState, 94
Diff, 22
resetFocus method
KeyStrokeEditorPanel, 33

resetFullPaths method
PathSet, 47

resizeAction method
example, 148
LayoutAssistant, 136
SelectNib, 138

restoreFrom method
ServerLauncher, 253

reverselterator method
Diff, 22

RevisionInfo class, 202
BUFFER _REVISION, 203
FILE_REVISION, 203
getAuthor, 202
getComment, 202
getDate, 202
getLabel, 202
getLabels, 202
getRevisionNumber, 202
isUnderVCS, 202
isWorkingRevision, 202
setAuthor, 202
setComment, 202
setDate, 202
setLabel, 202
setLabels, 202
setRevisionNumber, 202
setVCSFlag, 202
setWorkingRevision, 202

rtrim method
Strings, 61

run configurations
updating for application

servers, 247

S

samples
Designer, 129
LayoutAssistant, 151
PackageTree, 193
ReadingSource, 193
samplevcs, 223
WritingSource, 193
samplevcs sample, 223
save method
example, 185
PathSet, 47
Server, 245
ServerManager, 229
SearchTree class, 56
enableDragDrop, 57
getExpansionState, 57
getFarthestPath, 57
getNearestPath, 57
getPreserveMode, 57
getSelectionState, 57
getStringPath, 57
selectNearestPath, 57
setDefaultTooltipEnabled, 58
setExpansionState, 58

setPreserveMode, 58
setSelectionState, 58

SelectBoxes interface, 137

example, 147
hide, 137
hideAll, 137
isVisible, 137
setContainer, 137
show, 137

selectNearestPath method

SearchTree, 57

SelectNib class, 137

example, 147, 148
getLayoutAssistant, 138
getNibBounds, 138
getRectangleDimension, 138
getRectangleLocation, 138
isSelectable, 138
parentLocation, 138
resizeAction, 138
setLayoutAssistant, 138
setRectangleDimension, 138
setRectangleLocation, 138
setSelectable, 138

target, 138

type, 139

use, 139

selectValue method

ListPanel, 37

serialize method

CmtSubcomponent, 91

Server class, 236

addUniquePath, 237
attemptDefaultConfiguration,
237
changeDirectoryReferences-
InString, 237
checkSetup, 237
clear, 237
clearProjectSettings, 237
createClientJar, 238
createClientLibrary, 238
createLibrariesFromSetup,
238
createLibrary, 238
DEFAULT WEIGHT, 247
ensureNonNullValue, 238
ensureProjectContainsServer-
ClientLibrary, 238
ensureProjectContainsServer-
Library, 238
formatJarFileParameter, 239
getAssociatedJdk, 239
getClassPath, 239
getClientJarService, 239
getClientLibraryClassPath,
239
getClientLibraryName, 239
getCompanionNode, 239
getCopy, 239
getCustomConfigurationPage
Factory, 239

getDefaultClassPath, 239
getDefaultHomeDirectory,
239
getDefaultName, 239
getDefaultServerName, 239
getDefaultVersion, 239
getDeployService, 240
getEjbService, 240
getExtraVisiBrokerTool-
Parameters, 240
getFileNameBasedOn-
Protocol, 240
getFullClassPath, 240
getFullLibraryClassPath, 240
getFullName, 240
getHomeDirectory, 240
getlncompleteDescription,
240
getJdkSupportProvider, 240
get)spServletService, 240
getLastModified, 240
getLegacyFullName, 240
getName, 241
getNameFromFullName, 241
getNewPathsBasedOnNew-
HomeDirectory, 241
getNodeValue, 241
getOptimizerPackages, 241
getPackages, 241
getPathSet, 241
getServerTypeld, 241
getServices, 242
getSetupLauncher, 242
getShortName, 242
getShortNameWithVersion,
242
getUniqueRunDebugClass-
Path, 242
getUrl, 242
getVersion, 242
getWeight, 242
hasClientJarCreator, 242
hasEjbDeployer, 242
hasSetup, 242
initialize, 242
INVALID SERVER, 247
isCopy, 243
isGranular, 243
isIncomplete, 243
isInitiallySetup, 243
isPageValid, 243
isServerEnabled, 243
isSetup, 243
isSetupCompleted, 243
isValidSetupDirectory, 243
libraryExists, 244
makeFullName, 244
makeServerLibraryName,
244
makeServerToolName, 244
modifyProjectLibraryList,
244

Index 317

NEW_SERVER WEIGHT,
247
newLauncher, 244
NO _NAME, 248
preServiceSelectionChanged
AndSaved, 244
registerServices, 245
save, 245
serverModified, 245
serverRelativePath, 245
serviceSelectionChanged,
245
serviceSelectionChanged-
AndSaved, 245
setClassPath, 245
setCustomConfiguration-
PageFactory, 245
setHomeDirectory, 245
setJdkSupportProvider, 245
setPathSet, 246
setPathSetFromCopy, 246
setServerEnabled, 246
setSetupCompleted, 246
setVersion, 246
setWeight, 246
supportsCopy, 246
supportsCreateClientJar, 246
supportsJavaRunnableEjb-
Container, 246
updateClassPathWithNew-
HomeDirectory, 246
updateLastModified, 247
updateProjectClientSettings,
247
updateProjectSettings, 247
updateRunConfigurations,
247
uses VisiBrokerOrb, 247
WEIGHTED _
COMPARATOR, 248

SERVER COMPARATOR

field
ServerManager, 230

ServerLauncher class, 248

addSourceBridge, 248
appendHttpPort, 248
canStop, 248
clearExceptionQueue, 249
clearSourceBridges, 249
configureLauncher, 249
configureServices, 249
customizeArguments, 249
customizeClassPath, 249
customizeLibraries, 249
customizeTransportAddress,
249
customize VmParameters, 250
deployLibraries, 250
deployLibrary, 250
deployLibraryEntry, 250
escapeParameter, 250

318 Index

getArchivesToDeployOn-
Run, 250

getArguments, 250

getCommand, 250

getCurrentWorkingDirectory,
250

getDefaultArguments, 250

getDefaultNecessary-
Arguments, 250

getDefaultNecessaryVm-
Parameters, 250

getDefaultVmParameters,
250

getDefaultWorkingDirectory,
250

getEnvironment, 251

getEnvpWithPathVariable-
Prefix, 251

getFromBag, 251

getJavalLauncher, 251

getLabel, 251

getLibraryClassesRelative-
Path, 251

getLibraryDestination, 251

getNecessaryArguments, 251

getNecessaryVmParameters,
251

getProject, 251

getProjectLibrariesForRun,
251

getPropertyMap, 251

getQueuedExceptions, 251

getRunConfigPropertyPages,
251

getServer, 252

getService, 252

getServices, 252

getShutdownWaitTime, 252

getSourceBridge, 252

getSourceBridges, 252

getStopper, 252

getTracker, 252

getVmParameters, 252

getWaitForServerThread, 252

getWorkingDirectory, 252

getWorkingDirectoryFrom-
HomeDirectory, 252

init, 252

initLauncher, 252

isValidWorkingDirectory,
253

postStart, 253

postStop, 253

preStart, 253

preStartServices, 253

preStop, 253

putlnBag, 253

queueException, 253

restoreFrom, 253

setArguments, 253

setNecessaryArguments, 253

setNecessaryVmParameters,
253
setVmParameters, 254
setWorkingDirectory, 254
standardRunConfigProperty-
Pages, 254
stop, 254
supportsClearDeployed-
ArchivesBeforeRun, 254
trackerClosed, 254
updateLastModified, 254
useVmParameters, 254
validateServices, 254

ServerManager class, 225

findServerPathSet, 226
findService, 226
getAvailableTypes, 226
getEnabledServers, 226
getLastRegisteredServer, 226
getNoneServerltem, 226
getPrimaryServer, 227
getServer, 227
getServers, 227
getService, 227
getServices, 227
getServiceType, 227
getServiceTypes, 227
NONE_NAME, 230
registerCustomConfig-
urationPageFactory, 228
registerJdkSupportProvider,
228
registerLegacyName, 228
registerServer, 229
registerService, 229
registerServiceType, 229
registerTargeting, 229
save, 229
SERVER_COMPARATOR,
230
SERVICE_COMPARATOR,
230
SERVICE TYPE _
COMPARATOR, 230
serviceAvailable, 229
serviceSupported, 230

serverModified method

Server, 245

serverRelativePath method

Server, 245

servers. See application

SCrvers:servers

Service class, 232

buildFeatureSet, 232

configureLauncher, 232

getAllAvailableFeatures, 232

getAllAvailableSpecFeatures,
232

getAssociatedModuleType,
232

getAvailableSpecFeaturesFor
AssociatedModuleType,
233
getClientVmParameters, 233
getCompanionNode, 233
getCustomizedRunDebug-
ClassPath, 233
getDefaultSupportedSpec-
Features, 233
getDependencies, 233
getFeatures, 233
getProjectPropertiesPage,
234
getRunConfigPropertyPage,
234
getServer, 235
getService, 235
getServices, 235
getServiceType, 235
getServiceTypeKeys, 235
isGranular, 235
NO_DEPENDENCIES, 236
NO_FEATURES, 236
postStart, 235
postStop, 235
preStart, 235
preStop, 235
projectUsesService, 235
supportsFeature, 236
validate, 236
service types. See application
servers:service types
Service. Type class, 230
checkChildNodes, 231
getFeatureDefinition, 231
getlcon, 231
getName, 231
getPropertyKey, 231
getSkuVersion, 231
isDefaultEnabled, 231
isEnabledForSku, 231
isRuntime, 232
SERVICE_COMPARATOR
field
ServerManager, 230
SERVICE TYPE _
COMPARATOR field
ServerManager, 230
serviceAvailable method
ServerManager, 229
services. See application
servers:services
serviceSelectionChanged
method
Server, 245
serviceSelectionChanged And-
Saved method
Server, 245
serviceSupported method
ServerManager, 230
SessionService class, 232
setActionCommand method

ColorPanel, 14
setActiveNode method
example, 183
setAddButtonVisible method
ListPanel, 37
setAddToProjectEnabled method
PackageBrowserDialog, 39
setAddToProjectSelected
method
PackageBrowserDialog, 39
setAddToProjectVisible method
PackageBrowserDialog, 39
setAffectChildrenEnabled
method
CheckTreeNode, 9
setAffectedByParent method
CheckTreeNode, 9
setAllowPackages method
PackageBrowserDialog, 39
setAlphaThreshold method
Auralmage, 6
setArguments method
ServerLauncher, 253
setAssignment method
CmtSubcomponent, 91
setAuraRGB method
Auralmage, 6
setAuthor method
RevisionInfo, 202
setAutoCenter method
DefaultDialog, 20
setAuxPath method
ProjectPathSet, 52
setBackground method
example, 148
setBakPath method
ProjectPathSet, 52
setBoundsAsString method
DefaultDialog, 20
setBreakOnNewLine method
RegularExpression, 55
setBytes method
AbstractDeployment-
Descriptor, 260
setCancelButton method
DefaultDialog, 20
setChecked method
CheckTreeNode, 9
setClassComboVisible method
PackageBrowserDialog, 39
setClassPath method
PathSet, 47
Server, 245
setCollection method
PathSet, 48
setComment method
RevisionInfo, 202
VCSFilelnfo, 204
setContainer method
SelectBoxes, 137
setContent method
example, 127

setContents method
TextFile, 66
setCustomColor method
ColorPanel, 14
setCustomColors method
ColorCombo, 13
ColorPanel, 15
setCustomConfigurationPage-
Factory method
Server, 245
setCustomizerDialog method
CmtSubcomponent, 91
setDate method
RevisionInfo, 202
setDefaultButton method
DefaultDialog, 20
setDefaultSourcePath method
ProjectPathSet, 52
setDefaultTooltipEnabled
method
SearchTree, 58
setDefaultValue method
CmtPropertyState, 94
setDisplayOptions method
KeyStrokeDialog, 31
KeyStrokeEditorPanel, 33
KeyStrokeEditorTextField,
34
setDocPat method
PathSet, 48
setEditButtonVisible method
ListPanel, 37
setEjbJarDirty method
AbstractDescriptor-
Conversion, 264
setEnabled method
CheckTreeNode, 9
example, 181
ListPanel, 37
setEnablementAffectedByParent
method
CheckTreeNode, 10
setExpandedlcon method
CheckTreeNode, 10
setExpansionState method
SearchTree, 58
setExtral.ocation method
AbstractDeployment-
Descriptor, 260
setFileAccessor method
AbstractDeployment-
Descriptor, 260
setFromCopy method
PathSet, 48
setFullLibPath method
ProjectPathSet, 52
setHelpButton method
DefaultDialog, 20
setHomeDirectory method
Server, 245
setlcon method
CheckTreeNode, 10

Index 319

setIncludeTestPath method
ProjectPathSet, 52
setlnitializer method
CmtSubcomponent, 91
example, 187, 188
setIDKPathSet method
ProjectPathSet, 52
set]DKs method
ProjectPathSet, 52
setJdkSupportProvider method
Server, 245
setKeyStroke method
KeyStrokeDialog, 31
KeyStrokeEditorPanel, 33
KeyStrokeEditorTextField,
34
setLabel method
RevisionInfo, 202
setLabels method
RevisionInfo, 202
setLastDesignedNode method
CmtComponentSource, 87
setLayoutAssistant method
example, 148
SelectNib, 138
setLibKit method
PathSet, 48
setLibPath method
ProjectPathSet, 52
setLibraries method
ProjectPathSet, 53
setList method
ListPanel, 37
setLiveClass method
CmtSubcomponent, 91
setLivelnstance method
CmtSubcomponent, 91
setLocked method
CheckTreeNode, 10
setLogStream method
Debug, 17
setMode method
PackageBrowserTree, 43
setModel method
DesignView, 137
TableSorter, 64
setModified method
JotSourceElement, 174
setModifiers method
example, 186, 187
JotClassSource, 168
JotMethodSource, 171
setModuleDirty method
AbstractDescriptor-
Conversion, 264
setMoveButtonsVisible method
ListPanel, 37
setName method
AbstractDeployment-
Descriptor, 260
CmtPropertySource, 93
JotClassSource, 168

320 Index

JotMethodSource, 171
JotType, 169
PathSet, 48
setNecessaryArguments method
ServerLauncher, 253
setNecessaryVmParameters
method
ServerLauncher, 253
setNeedsSerialize method
CmtSubcomponent, 91
setOrientation method
ButtonStrip, 7
setOutPath method
ProjectPathSet, 53
setPackage method
example, 185
JotSourceFile, 161
setPackageBrowserFilter method
PackageBrowserTree, 43
setPanelGridHeight method
ColorPanel, 15
setParameterText method
JotMethodSource, 171
setParent method
example, 182
setPathSet method
Server, 246
setPathSetFromCopy method
Server, 246
setPatternMatch method
RegularExpression, 55
setPopupAlignment method
ColorCombo, 13
setPopupGridHeight method
ColorCombo, 13
setPreserveMode method
SearchTree, 58
setProject method
PackageBrowserTree, 43
setProperty method
PathSet, 48
setReadable method
CmtPropertySource, 93
setRectangleDimension method
SelectNib, 138
setRectangleLocation method
SelectNib, 138
setRegExpMatch method
RegularExpression, 55
setReopenWarningMessage
method
SetupManager, 266
setRequired method
PathSet, 48
setRestartWarningMessage
method
SetupManager, 266
setReturnType method
JotMethodSource, 171
setRevisionNumber method
RevisionInfo, 202
setRunnerListener method

CommitAction, 212
setScope method
CmtSubcomponent, 91
setSelectable method
example, 148
SelectNib, 138
setSelectedColor method
ColorCombo, 13
ColorPanel, 15
setSelectedPath method
PackageBrowserTree, 43
setSelectionState method
SearchTree, 58
setSelectTopAfterSort method
TableSorter, 64
setServerEnabled method
Server, 246
setSetupCompleted method
Server, 246
setShowDescription method
Setup, 268
setShowEventType method
KeyStrokeEditorTextField,
34
setShowKeyReleased method
KeyStrokeEditorTextField,
34
setShowKeyTyped method
KeyStrokeEditorTextField,
34
setShowReopenWarning method
SetupManager, 266
setShowRestartWarning method
SetupManager, 266
setSourcePath method
PathSet, 48
setStatus method
VCSFilelnfo, 204
VCSFileStatus, 205
setStatusMsg method
JBuilderInfo, 29
setStatusText method
VCSUtils, 210
setSuperclass method
example, 186
JotClassSource, 169
setTestPath method
ProjectPathSet, 53
setText method
CheckTreeNode, 10
JotSourceElement, 174
setTexture method
TexturePanel, 67
setTimestamp method
AbstractDeployment-
Descriptor, 260
JotSourceFile, 161
setType method
CmtPropertySource, 93
Setup class, 267
CATEGORY, 268
createSetupPage, 267

example, 269
getName, 267
getPageFactory, 267
getPersonalities, 267
getSetupPropertyPage, 267
initializeSetupPage, 267
isEnabled, 268
isShowDescription, 268
LAST SELECTED
SETUP_NAME field, 268
setShowDescription, 268
SetupManager class, 265
checkShowRestartWarning,
265
example, 269
getSetup, 265
getSetupPersonalities, 265
getSetups, 265
isShowReopenWarning, 266
isShowRestartWarning, 266
registerSetup, 266
setReopenWarningMessage,
266
setRestartWarningMessage,
266
setShowReopenWarning, 266
setShowRestartWarning, 266
SetupPage interface, 269
createSetupPanel, 270
getDescription, 270
SetupPropertyPage class, 270
createSetupPanel, 270
getBrowser, 270
getDescription, 270
getProject, 270
isModified, 270
setUrl method
PathSet, 48
VCSFilelnfo, 204
setValue method
CmtPropertyState, 94
example, 182
setValueAt method
TableSorter, 64
setValueSource method
CmtPropertySetting, 95
CmtPropertyState, 94
example, 146
setValueText method
CmtPropertyState, 95
setVCSFlag method
RevisionInfo, 202
setVersion method
Server, 246
setVmParameters method
ServerLauncher, 254
setWeight method
Server, 246
setWizardTitle method
example, 181
setWorkingDirectory method
ProjectPathSet, 53

ServerLauncher, 254
setWorkingRevision method
RevisionInfo, 202
setWritable method
CmtPropertySource, 93
show method
DefaultDialog, 20
example, 147, 148
SelectBoxes, 137
ZipIndex, 71
showAll method
ZipIndex, 71
showClassBrowserDialog
method
PackageBrowserDialog, 40
showHelp method
example, 183
PackageBrowserDialog, 40
showInfoDialog method
JBuilderInfo, 29
showModalDialog method
DefaultDialog, 20
showPackageBrowserDialog
method
PackageBrowserDialog, 40
showProjectStatus method
VCSUtils, 210
showSimpleModalDialog
method
DefaultDialog, 20
showSimpleNonModalDialog
method
DefaultDialog, 20
showVcsConfigurationDialog
method
VCSUtils, 211
shutdown method
CmtComponents, 82
JotPackages, 159
shuttlesort method
TableSorter, 64
size method
Diff, 23
SOLARIS field
Platform, 49
sort method
TableSorter, 64
sortByColumn method
TableSorter, 64
SourceSafeVCS example, 212
STANDALONE_DDEDITOR
field
Platform, 49
STANDARD ENCODING field
Strings, 62
STANDARD ENCODING
DESCRIPTION field
Strings, 62
standardRunConfigPropertyPage
s method
ServerLauncher, 254
startProfiler method

Debug, 17
startsWithIgnoreCase method
Strings, 61
stop method
ServerLauncher, 254
stopEditing method
KeyStrokeEditorPanel, 33
stopProfiler method
Debug, 18
Streams class, 58
copy, 58
read, 58
readChars, 59
strings
escaping characters, 62
Strings class, 59
canConvertTolnteger, 59
capitalize, 59
convertLineEndings, 59
convertTolnteger, 59
convertToPlatformLine-
Endings, 60
convertToUnixLineEndings,
60
decapitalize, 60
decode, 60
decodeArray, 60
EMPY_ARRAY, 61
encode, 60
encodeArray, 60
format, 61
getSubStrings, 61
isEmpty, 61
Itrim, 61
rtrim, 61
STANDARD_ ENCODING,
62
STANDARD_ ENCODING
DESCRIPTION, 62
startsWithIgnoreCase, 61
Strings.StringEncoding class, 62
decode, 62
encode, 62
subcomponentChanged method
CmtComponentListener, 88
substringMatch method
RegularExpression, 55
supportsClearDeployed-
ArchivesBeforeRun method
ServerLauncher, 254
supportsCopy method
Server, 246
supportsCreateClientJar method
Server, 246
supportsFeature method
Service, 236
supportsJavaRunnableEjb-
Container method
Server, 246
swap method
TableSorter, 64

Index 321

T

tableChanged method
TableSorter, 64
tables
sorted, 62
TableSorter class, 62
addMouseListenerToHeader-
InTable, 63
checkModel, 63
compare, 63
compareRowsByColumn, 63
getSortedRowlIndex, 63
getUnsortedRowIndex, 63
getValueAt, 63
lastColumnSorted, 63
lastSortAscending, 63
n2sort, 64
reallocateIndexes, 64
redoLastColumnSort, 64
setModel, 64
setSelectTopAfterSort, 64
setValueAt, 64
shuttlesort, 64
sort, 64
sortByColumn, 64
swap, 64
tableChanged, 64
target field
example, 148
SelectNib, 138
Text class, 65
getHeadingSpace, 65
getIndentColumn, 65
makelntoArray, 65
remove AllWhitespaceFrom,
65
removeTrailingBlankLines,
65
replaceTabs, 66
TextFile class, 66
getContents, 66
setContents, 66
TexturePanel class, 66
getTexture, 67
setTexture, 67
todo template, 191
toEditScript method
Diff, 23
toPath method
Classes, 11
toString method
AbstractDeployment-
Descriptor, 260
CheckTreeNode, 10
trace method
Debug, 18
trackerClosed method
ServerLauncher, 254
TransactionService class, 232
trees
searching in, 56

322 Index

with checkboxes, 7
triggerPropertyChange method
CmtPropertyState, 95
type field
example, 148
SelectNib, 139

U

UlDesigner class, 131
example, 144
registerAssistant, 131

UlISampler example, 72

UNIX field
Platform, 49

update method
example, 181

updateBuildTask method
AppServerTargeting, 257

updateClassPathWithNewHome
Directory method
Server, 246
updateDeploymentDescriptors
method
AppServerTargeting, 257
updateEjbModule method
AbstractDescriptor-
Conversion, 264
updateLastModified method
Server, 247
ServerLauncher, 254
updateProjectClientSettings
method
Server, 247
updateProjectSettings method
Server, 247
updateRunConfigurations
method
Server, 247
updateVerifyReport method
AppServerTargeting, 258

Url class
backup Urls, 207
example, 181
for a class, 158
for a JOT file, 159
make backup, 209

use field
SelectNib, 139

uses VisiBrokerOrb method
Server, 247

useVmParameters method
ServerLauncher, 254

utilities
for streams, 58
for strings, 59, 65
for text files, 66
images, 24, 25

\%

VA INIT METHOD NAME
field
CmtComponentSource, 87

validate method
Service, 236

validateDialog method
DialogValidator, 21

validateServices method
ServerLauncher, 254

VCS, 197. See VCS class
binary files, 201, 208, 209
comments, 205
committing, 211
configuration, 211
current VCS, 207
deleting files, 210
file status, 204
icons, 201, 204
ignoring files, 199, 201, 205,

206, 210
labels, 202
make backup, 209
menus, 200, 201
project status, 200, 210
property page, 199
registration, 199
required files, 207, 208, 209
retrieve project, 199
retrieve source, 200
revision history, 200
revision numbers, 202, 203
revisions, 202
utilities, 205
working revision, 202

VCS class, 199. See VCS
addTolgnoreList, 199
example, 213
getDescription, 199
getMergeContflictDivider-

Marker, 199
getMergeConflictEndMarker,
199
getMergeStartDividerMarker,
199
getName, 199
getNewProjectFromVCS-
WizardAction, 199
getProjectConfigPage, 199
getProjectConfigPageNew,
199
getProjectStatus, 200
getRefactorCheckoutAction,
200
getRevisions, 200
getSource, 200
getVCSContextMenuGroup,
200
getVCSFileMenuGroup, 200
getVCSGlobalMenuGroup,
201

getVCSlcon, 201
getVCSProjectMenuGroup,
201
isBinary, 201
isConfigureVCSMenu-
Enabled, 201
isSelectVCSMenuEnabled,
201
isUnderVCS, 201
notifyVCSSelected, 201
removeFromIgnoreList, 201
VCSFactory class, 198
addVCs, 199
example, 214
getNames, 199
getVCS, 199
VCSFilelnfo class, 203
getComment, 204
getFile, 204
getName, 204
getStatus, 204
getUrl, 204
setComment, 204
setStatus, 204
setUrl, 204
VCSFileStatus class, 204
getActions, 204
getStatus, 204
getStatuslcon, 204
getVCSFileActions, 205
isCommentRequired, 205
isModifiedInVCS, 205
isModifiedLocally, 205
isNew, 205
setStatus, 205
VCSUtils class, 205
addPersonallgnoreFiles, 205
addTeamlgnoreFiles, 206
checkProjectLocal, 206
createBackupAndOutputDirs,
206
doesProjectTreeNeed-
Refreshed, 206
fixConflictForEjbGrpXml-
Source, 206
fixConflictsForJavaSource,
206
getActiveVCS, 207
getActiveVCSName, 207
getBackupUrl, 207
getBrowserActiveNode, 207
getExcludedPaths, 207
getFilesNeededByVCS, 207
getLocalRevisions, 207
getPathRelativeToProject-
Directory, 207
getPersonal ExcludedPaths,
208
getRelativePath, 208
getSelectedNodesInProject-
Pane, 208
handleOldStyleProjects, 208

isBinaryFileNode, 208
isFileType, 208
isInProjectDirectory, 208
isVCSFileOrDir, 208
makeLocalBackup, 209
notifyProjectTreeHasBeenRe
freshed, 209
refreshHistoryPane, 209
registerFileOrDirNeededByV
CS, 209
registerSourceClass, 209
removeFile, 210
removePersonallgnoreFiles,
210
removeTeamlgnoreFiles, 210
setStatusText, 210
showProjectStatus, 210
showVcsConfigurationDialog
,211
verifyDeploymentDescriptors
method
AbstractDescriptor-
Conversion, 264
AppServerTargeting, 258
example, 258, 259
version control system. See VCS
VetoException class, 67
VFS, 128
Virtual File System. See VFS
VisiBroker, 247
Visual SourceSafe, 212

W

waitForlmage method
Images, 26
warn method
Debug, 18
wasCommitSuccessfull method
CommitAction, 212
Web application, 113
WebAppPersonality class
example, 181
WEIGHTED COMPARATOR
field
Server, 248
WIN32 field
Platform, 49
Wizard interface
example, 180
WizardAction class
example, 180
for VCS, 199
WritingSource sample, 193

X

XMLValidator example, 287

XSLTNodeViewer example, 294

XSLTViewerFactory example,
290

Z
Zip files, 67

Index 323

ZipHelpTopic class

example, 183

ZipIndex class, 67

close, 68

contains, 69
getAllChildren, 69
getChildren, 69
getExistingZipFile, 69
getFilenames, 69
getLastModified, 69
getOpenZipIndexes, 69
getRawLastModified, 69
getZipEntries, 70
getZipIndex, 69
getZipIndexEntry, 70
hide, 70

hideAll, 70
isDirectory, 70
isHidden, 70

isOpen, 70

length, 70

open, 70

read, 70, 71

show, 71

showAll, 71

ZipIndexEntry class, 71

getDirectory, 71
getLastModified, 71
getName, 71
getRawLastModified, 71
isDirectory, 72

